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ABSTRACT 
 
 
 

This thesis evaluates the usefulness of the SRC-6E re-

configurable computing system for a radar signal processing 

application and documents the process of creating and im-

porting VHDL code to configure the user definable logic on 

the SRC-6E.  A false-target radar-imaging algorithm was 

chosen and implemented on the SRC-6E.  Data from alterna-

tive computational approaches to the same problem are com-

pared to determine the effectiveness of SRC-6E solution.  

The results show that the implementation of the algorithm 

does not provide an effective solution when executed on the 

SRC-6E.  An evaluation of the SRC-6E difficulty of use is 

conducted, including a discussion of required skills, ex-

perience and development times.  The algorithm test code 

and collected data are included as appendices.
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EXECUTIVE SUMMARY 
 

The purpose of this research was to evaluate the per-

formance, correctness, and ease of use of the SRC-6E recon-

figurable computing system built by SRC Computers, Inc., 

and also to aid in establishing a broad base of knowledge 

on what types of applications are appropriate for implemen-

tation on this type of machine.  To this end, it was neces-

sary to first choose a readily available yet suitably com-

plex algorithm for implementation on the SRC-6E.  The algo-

rithm chosen was based on a custom chip design previously 

developed by a faculty/student research team at the Naval 

Postgraduate School which creates false target radar im-

ages.  A C language program, written by Professor Douglas 

Fouts, was also available to use as a standard for compar-

ing the accuracy of results throughout the research. 

Reconfigurable computing is defined as “the capability 

of reprogramming hardware to execute logic that is designed 

and optimized for a specific user’s algorithms” [1]. The 

SRC-6E reconfigurable computer is a Linux-based system con-

sisting of two independent sides labeled A and B which each 

contain motherboards holding dual Intel P3 Xeon 1-GHz proc-

essors, 1.5 gigabytes of memory, and a SNAP interface card.  

The SNAP card is a custom interface card which plugs into a 

motherboard DIMM memory slot and provides connections to 

the MAP board which is located in a third section of the 

system.  A single MAP board consists of two independent 

MAPs.  MAP, a registered trademark of SRC Computers, Inc., 

is the name for the custom hardware.  Each MAP consists of 

three Xilinx Virtex-II-series XC2V6000 FPGAs and 24 mega-

bytes of memory.  One of the FPGAs is reserved for “control 
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logic” while the other two, available for user programs, 

are called “user logic”.  The memory is split into six 

equal banks, labeled A through F, of 4 megabytes each.  The 

user FPGAs are connected to a fixed 100-MHz clock. 

 Code written in the hardware description languages 

Verilog and/or VHDL can be ported for use on the SRC-6E 

with only minor changes.  Several support files are re-

quired to make the code target the user logic.  These files 

primarily describe the interfaces to the code.  The algo-

rithm selected for the research described here was written 

in VHDL and converted for use on the SRC-6E. 

In order to evaluate the effectiveness of the SRC-6E, 

timing data was collected from several sources.  The first 

data source was the executable created on the SRC-6E which 

utilizes the reconfigurable user logic.  The second data 

source was a C program which performs the same functional-

ity as the VHDL code.  This code was compiled and executed 

on a 3-GHz Pentium 4 system, utilizing 2 gigabytes of DIMM 

memory and the Windows XP Professional operating system.  

The third data source was the same C program running on the 

1-GHz Xeon processor on the Linux based SRC-6E (but not us-

ing the MAP).  Several input data sets were created for 

testing.  Each individual input data value consists of a 5-

bit number, written as two hexadecimal digits, which repre-

sent an intercepted radar signal.  Data sets containing 32, 

64, 128, 256, 512, 1024, 2048, 4096, 8192, 16284, 32786, 

65536, 131072, 262144, and 500000 data values were used.  

Five timing runs were conducted for each data set on all 

three data sources. 
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The timing data shows the SRC-6E MAP execution time is 

extremely fast, even for very large data set sizes.  How-

ever, the total execution time for the SRC-6E VHDL macro 

takes considerably longer than all other benchmark sources.  

The extra time represents delays in the system to prepare 

and transfer the data in and out of the MAP which cause the 

SRC-6E execution time to be longer for all input set sizes, 

initially by an order of magnitude. 

As input set size is increased the timing results be-

gin to converge.  The overhead in the SRC VHDL macro 

clearly dominates the results for smaller sample set sizes.  

However, for larger sample set sizes, the overhead time is 

amortized over the total time to be nearly insignificant.  

Presumably, the SRC macro total execution time would even-

tually meet the other benchmark platforms if the sample set 

size could be further increased.  However, this is not pos-

sible with the current macro design due to the memory de-

sign of the SRC-6E hardware. 

Programming the SRC-6E to use user-defined macros re-

quires knowledge of high-level programming languages, hard-

ware description languages, hardware component design, and 

synthesizability.  Relatively few people possess all of 

these skills to use the system effectively without first 

receiving significant training.  However, programming the 

system using only high-level languages of C or Fortran is 

possible which widens the potential user base to many more 

people.  More research needs to be performed to determine 

if either method produces more effective solutions. 

The SRC-6E has a relatively steep learning curve.  

There are a few examples in the documentation and a very 
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small body of work in place using the system.  The errors 

generated by the system during development are not intui-

tive and cannot be solved without previous experience with 

solving the same errors.  There are no development tools in 

place to assist novice users in programming the system.  

More research is required to see how much experience on the 

system is required to prevent and or recognize these types 

of errors quickly. 

The development time to implement solutions on this 

system appears to be high, primarily due to the steep 

learning curve and lack of development tools.  More re-

search must be performed to quantify the development time 

and see how it improves once a group of experienced repeat 

users is grown.  No research has yet been performed with 

large projects, employing multiple programmers, to see if 

the total project time can be reduced effectively. 

Since it is pipelined and supports parallel process-

ing, the chosen implementation of the false-target radar-

imaging algorithm appears to be one that would benefit from 

a reconfigurable computer.  However, the current implemen-

tation has been shown to lack the necessary parallelism re-

quired to fully utilize the hardware and make it effective.  

Without increases in the memory size allocated for the user 

logic, the implementation on the SRC-6E is not an effective 

solution in terms of development time, processing time, or 

cost-effectiveness. 
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I. INTRODUCTION  

A. PURPOSE 

The purpose of this research was to evaluate the per-

formance, correctness, and ease of use of the SRC-6E recon-

figurable computing system built by SRC Computers, Inc., 

and also to aid in establishing a broad base of knowledge 

on what types of applications are appropriate for implemen-

tation on this type of machine.  To this end, it was neces-

sary to first choose a readily available yet suitably com-

plex algorithm for implementation on the SRC-6E.  The algo-

rithm chosen was based on a custom chip design previously 

developed by a faculty/student research team at the Naval 

Postgraduate School which creates false target radar im-

ages.  A C language program, written by Professor Douglas 

Fouts, was also available to use as a standard for compar-

ing the accuracy of results throughout the research. This 

chapter discusses the basics of the false radar imaging al-

gorithm, use of the chip design and C program in the re-

search and gives an overview of the major steps required to 

implement and test the algorithm using the SRC-6E. 

B. FALSE TARGET RADAR IMAGING ALGORITHM 

The algorithm works by splitting a false target image 

into several range bins, as shown in Figure 1, where a ship 

is split into four range bins.  Each range bin represents a 

portion of the vessel based on the distance from the radar 

source.  Greater resolution can be achieved by having a 

greater number of range bins for a given false target.  It 

can be observed from the geometry that the radar-signal 

travel distance is different for each range bin.   



2 

 

Figure 1.   False Target Radar Imaging Algorithm Usage 

 

Based on knowledge of a ship’s radar image, an opera-

tor can set phase rotation and gain constants for each 

range bin. The algorithm begins with the interception and 

sampling of an interrogating radar pulse.  The sample phase 

is then rotated by adding a rotation constant to it.  Next, 

the sine and cosine are calculated.  The gain is then ap-

plied to the results by multiplying by a gain value.  The 

results of each range bin are then summed up to produce a 

radar reflection signal at a given time.  With proper use, 

the ship can be made to appear in a false position, be of a 

different type of target, or to appear to be traveling with 

other ships. 

C. FALSE-TARGET RADAR-IMAGING CHIP DESIGN 

The false-target radar-imaging chip consists of a 6-

stage pipeline which performs all necessary functions to 

create a false radar reflection for a single range bin.  

Figure 2 shows the signal flow through the slightly simpli-

fied version as was implemented during the research. 

Ship 
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Bin 1

Radar 
Source 
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Figure 2.   False Target Radar Image Chip Signal Flow 
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The basic steps of the algorithm are performed as fol-

lows:  

1. The phase sample enters into register 3. 
 
2. The phase rotation value enters into register 1, 

is then loaded into register 2, and is then added to the 
phase sample at adder 1.  The results are then loaded into 
register 4. 

 
3. The contents of register 4 enter the lookup table 

(LUT) and Sine and Cosine results are calculated.  The re-
mainder of the pipeline is split into two identical por-
tions for each data result.  The following steps outline 
the path for the Sine result. 

 
4. The gain value enters at register 5, is then 

loaded to register 6, and proceeds to shifter 1 where it 
controls how the contents of register 7 are shifted before 
they proceed to register 9.  This accomplishes modulo-2 
multiplication. 
 

5. The result from a preceding range bin enters at 
register 11 and is added to the contents of register 9 in 
adder 2 before proceeding to register 13. 

 
6. The contents of register 13 are now available as 

output Q if this is the last range bin in the series or are 
sent to register 11 of a following range bin. 

The control logic block receives signals URB (use range 

bin), PSVin (phase sample valid input), and ODVin (output 

data valid input).  These signals are used to create the 

CLR13 (clear 13-bit register), CLR17 (clear 17-bit regis-

ter), PSVout (phase sample valid output), and ODVout (out-

put data valid output). 

The internal design of the control logic is shown in 

Figure 3.  The CLR13 and CLR17 signals are used to clear 

the register contents at the appropriate time in the pipe-

lines when they do not contain valid data.  This occurs 

during pipeline startup and shutdown.  The PSVout signal is 

present to show the DRFM signal is valid.  The ODVout sig-
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nal is present to show that outputs Q and I contain valid 

data.  The URB signal is present to allow the operator to 

disable a range bin.  Figure 4 shows the signal flow when 

four range bins are connected together. 

 

Figure 3.   Internal Design of the Control Logic 

 

D. FALSE-TARGET RADAR-IMAGING PROGRAM DESIGN 

The false-target radar-imaging program was written in 

the C language.  It performs the same arithmetic calcula-

tions as the false radar imaging chip but uses nested loop 

iterative structures instead of pipelines.  While the chip 

requires a separate pipeline for each range bin, the pro-

gram simply adds additional length to the appropriate ar-

rays, trading off memory utilization for computational 

logic.  Table 1 shows how the results of each of four range 

bins with an input of N samples are placed into the two di-

mensional array created by the program.  Each row of the 

table is then summed up to produce the false target radar 

signal results. 
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Figure 4.   Signal Flow for Four Cascaded Range Bins 
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The program was used as both a trusted source for re-

sults to test the research against as well as used in the 

timing comparisons discussed in Chapter V.  The full code 

for the program can be viewed in Appendix A. 

E. REMAINING CHAPTER OUTLINE 
The following outlines the remaining chapters which 

roughly follow the major steps that were taken throughout 

the research: 

•  Chapter II discusses the SRC-6E architecture, 
programming environment, and documentation. 

•  Chapter III discusses programming the chip design 
using VHDL. 

•  Chapter IV discusses porting the VHDL code to 
SRC-6E environment 

•  Chapter V presents the data collection methods 
and analysis. 

•  Chapter VI provides conclusions and future work 
recommendations. 

•  Appendix A contains the modified C program origi-
nally written by Professor Douglas Fouts which 
was used a standard for output correctness and as 
a source of timing data. 

•  Appendix B contains the final version of the VHDL 
code that was tested before porting to the SRC-
6E. 

•  Appendix C contains the final version of the 
files used on the SRC-6E, including sample input 
and output. 

•  Appendix D contains all of the timing data col-
lected during the research. 
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II. SRC-6E ARCHITECTURE AND SOFTWARE ENVIRONMENT 

A. INTRODUCTION 

This chapter provides a brief overview of the hard-

ware, software, and documentation, of the SRC-6E recon-

figurable computing system.  Reconfigurable computing is 

defined as “the capability of reprogramming hardware to 

execute logic that is designed and optimized for a specific 

user’s algorithms” [1]. 

B. SRC-6E HARDWARE OVERVIEW 

The SRC-6E computer consists of two independent Linux 

computers (labeled A and B) and a MAP board, (see Figure 

5). 

 

Figure 5.   SRC-6E System Diagram (After Ref. 2.) 

 

MAP, a registered trademark of SRC Computers, Inc., is the 

name of the custom reconfigurable hardware.  Each independ-

ent Linux computer contains a motherboard holding dual In-
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Side B

MAP 
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Microprocessor 
Side A 
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tel P3 Xeon 1-GHz processors, 1.5 gigabytes of memory, and 

a SNAP interface card.  The SNAP card is a custom interface 

card which plugs into a motherboard DIMM memory slot and 

provides connections to the MAP board which is located in 

the MAP Chassis.  A single MAP board consists of two inde-

pendent MAPs.  A block diagram of a single MAP is shown in 

Figure 6.  A MAP consists of three Xilinx Virtex-II-series 

XC2V6000 FPGAs and 24 megabytes of memory (labeled OBM on 

Figure 6). 

 

Figure 6.   MAP Interface Block Diagram (From Ref. 2.) 

 

One of the FPGAs is reserved for “control logic” while the 

other two, available for user programs, are called “user 

logic”.  The OBM memory is split into six equal banks, la-

beled A through F, of 4 megabytes each.  The user FPGAs are 

connected to a fixed 100-MHz clock, which seems overly re-

strictive.  According to Xilinx product specification 

sheets, the Virtex-II-series FPGAs can ran at clock speeds 

as low as 1 MHz and upwards of 400 MHz [3].  Programmer 
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control of the clock speed on the SRC-6E would make the 

system more flexible.  Each MAP also has a chain port which 

can be used for direct I/O to the user logic, but was not 

used during this research. 

C. SOFTWARE ENVIRONMENT 

1. Operating System 

The operating system for the SRC-6E is Red Hat Linux, 

which has been augmented with custom drivers and libraries 

to support the MAP and SNAP hardware.  The built-in graphi-

cal text editor in Linux is called GEdit.  Programmers ex-

perienced with UNIX can use the standard line type text 

editors such as VI if they choose.  Both contain the mini-

mal functionality required of a text editor to write the 

required files for the SRC-6E.   

2. Programming Environment 

The programming environment for the SRC-6E is called 

Carte.  Carte allows a user to write code in a high level 

language, either C or Fortran, that directly targets the 

user programmable FPGAs in the MAP.  In addition, users can 

write their own “macros” using the hardware definition lan-

guages Verilog and/or VHDL.  At compile time, all user code 

and macros are linked together into a single executable 

file. Carte includes standard compilers for the Intel mi-

croprocessors as well as custom MAP compilers for both For-

tran and C.  Synplify Pro software by Synplicity, Inc. is 

used for FPGA place and routing.  This program normally 

runs under Windows version but is executed in the Linux en-

vironment using a Windows emulator called Wine. 

Since Carte relies on the built-in Linux editors, the 

SRC-6E programming environment does not have any of the 

modern features a programmer expects from editors available 
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in products such as Microsoft’s Visual C++ or Borland’s J-

Builder.  Lack of syntax and error checking in the program-

ming environment is a serious drawback when using this sys-

tem.  Some error messagess are produced at compile time, 

but they are cryptic at best, especially for someone not 

used to the Linux environment.  There are several file 

types which must interact during the compile process, as 

will be discussed in Chapter IV.  The intricate details of 

these files can be quite confusing and it is often diffi-

cult to identify which file contains the problem based on 

the error messages given at compile time.  Rudimentary 

checking of these files within a custom editor would 

greatly improve the entire programming process. 

D. MAJOR DOCUMENTATION 

The documents discussed here come with the SRC-6E to 

aid in its programming. 

1. SRC-6E C Programming Environment Guide 

Driver code must be developed to create the interface 

to the user logic.  This document describes how to write 

this code using the C language [4]. 

2. SRC-6E Fortran Programming Environment Guide 

Similar to the C Programming Environment Guide, this 

document describes how to write similar code using the For-

tran language [5]. 

3. SRC-6E MAP Hardware Guide 

This document contains hardware implementation specif-

ics of the MAP which are well below the level required for 

users to successfully program the SRC-6E [2]. 

4. SRC-6E MAP Macro Developers Guide 

This document discusses general information on the use 

of the Macro Data Sheet Library, including naming conven-

tions, interfaces, fanout and combinatorial delays [6].  
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5. Macro Data Sheet Library 

The library contains data sheets for all macros devel-

oped by SRC for the SRC-6E.  A list of all currently sup-

ported macros is available in a technical note, Ref. 7.  

The macros can be used like regular function calls in the 

chosen programming environment language (C or Fortran).  

The macros include all basic math and logic functions cur-

rently supported by the environment.  There are also sev-

eral support macros which include, among others, various 

macros for combining and splitting data structures. 

 
 

This chapter provided an overview of the hardware, 

software and documentation of the SRC-6E computer.  The 

next chapter will discuss development and testing of the 

VHDL code used in the research. 
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III. DEVELOPMENT AND TESTING IN VHDL WITH ALDEC 
ACTIVE-HDL 5.2 

A. INTRODUCTION 

This chapter describes the development of the false-

target radar-imaging macro in VHDL before it was ported to 

the SRC-6E environment.  This portion of the research was 

performed before receipt of the SRC-6E system or any train-

ing on the system was received.  As a result, the macro 

that was originally developed contained the correct func-

tionality but was not optimized for the SRC-6E environment.  

Development of the macro was performed in a Windows XP en-

vironment using Aldec Active-HDL 5.2 software. 

B. FUNCTIONAL BLOCKS 

The False-Target Radar-Imaging chip was implemented 

directly into VHDL by direct programming of the code.  Each 

component of the design was created using separate func-

tional blocks of VHDL code.  Several of the basic building 

blocks of code were taken from Ref. 8 and modified as nec-

essary.  The code for this section can be viewed in Appen-

dix A. 

1. D-Type Flip Flops 

 The six pipeline stages required registers, which were 

implemented as D-type Flip Flops.  Single-bit registers 

were designed that are loaded on the rising clock edge and 

have both enable and clear input signals.  The 5-, 8-, 13-, 

and 17-bit registers required for the designed were created 

by instancing multiple copies of the single-bit registers. 

2. Adders 

 A single-bit full adder was coded using the design of 

Ref. 8.  The 5- and 16-bit adders required for the design 

were created by instancing multiple copies of the single-
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bit adder.  A simple ripple carry design was used at this 

point in the research.  Chapter IV will discuss why this 

was later modified with carry look-ahead circuitry.  For 

the 16-bit adder, a special final single-bit stage was de-

veloped to propagate an overflow signal if generated by 

previous range bin stages. 

3. Look-Up Table (LUT) 

The LUT was originally developed starting with a de-

sign from Ref. 7, but was later heavily modified.  The LUT 

takes a single 5-bit input and performs simultaneous look-

ups using data from both sine and cosine tables.  The out-

put of the LUT is two 8-bit values, one each for sine and 

cosine.  The initial design had the correct functionality 

but was later modified after porting to the SRC-6E.  The 

required modifications will be discussed in Chapter IV. 

4. Control Logic Block (CLB) 

The CLB was created by instancing several of the flip 

flops with some basic logic functions to create the design 

shown in Figure 3. 

5. Gain Shifter 

The shifter takes a 4-bit control input and shifts the 

8 bits of input data into a 13-bit output.  The shifter is 

designed to provide a maximum gain multiplication of 1024.  

However, applying this to an 8-bit input results in an 18-

bit output with more dynamic range than is necessary [9].  

Therefore, the least significant 5 bits are truncated to 

create a 13-bit output. Table 2 shows how the control bits 

affect the shift and the resulting resolution of the out-

put.  
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Table 2.   Gain Shifter Operational Data (After 
Ref. 9.) 

 

Because the input data could be negative, it was also 

necessary to preserve the sign bit by copying it as neces-

sary to the upper bits in the output.  The original version 

of this code used a case statement and some simple math to 

determine which bits were shifted where.  The version ran 

correctly in the Aldec simulation software, but required 

Control 

Code 

Multiplication 

Factor 

Size of 

Shift 

Sin/Cosine Wave 

Resolution 

0 1 0 3 

1 2 1 4 

2 4 2 5 

3 8 3 6 

4 8 3 6 

5 16 4 7 

6 32 5 8 

7 64 6 8 

8 16 4 7 

9 32 5 8 

10 64 6 8 

11 128 7 8 

12 128 7 8 

13 256 8 8 

14 512 9 8 

15 1024 10 8 
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modification when porting to the hardware, which will be 

discussed further in Chapter IV. 

6. One Range Bin 

A single range bin was created by instancing the above 

parts and creating an appropriate interface.  The code was 

tested by comparing the output to the C program run on the 

same data set.  After some minor error correction to the 

lookup table entries, the code was incorrectly deemed to be 

correct.  Additional testing later conducted with two range 

bins yielded additional errors in the CLB that were not 

found in the single range bin tests. 

7. Two Range Bins 

A system with two range bins was then created by in-

stancing two of the single range bins previously tested.  

Tests run on the same data sets with the C program yielded 

errors.  As previously mentioned, problems were eventually 

discovered with the timing within the CLB.  These problems 

were not identified while testing the single-range-bin 

since the CLB primarily creates signals to handle the in-

teraction between multiple range bins.  After correction of 

the errors, the output was deemed to be correct. 

8. Four Range Bins 

Finally, a system with four range bins was created by 

instancing four of the single range bins with an appropri-

ate interface.  The signal flow of four range bins is shown 

in Figure 4.  The code worked properly the first time.  It 

was this version of the code that was initially ported to 

the SRC-6E. 

 

This chapter discussed VHDL code development.  The 

next chapter will discuss porting the code to the SRC-6E. 
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IV. PORTING THE VHDL CODE TO THE SRC-6E 

A. INTRODUCTION 

This chapter discusses the porting of the VHDL code to 

the SRC-6E and the required support files.  Also discussed 

are changes that were required to the original code to make 

it compatible with the SRC-6E. 

B. THE SRC-6E FILE TYPES 

The process of writing code to target the user logic 

requires several file types.  To import a user macro from 

either VHDL or Verilog, five files must be created: .info, 

.box, .mc, .c, and the makefile.  Using only the last 

three, one can write code that targets the user logic with-

out using a user defined macro.  Examples of these file 

types can be viewed in Appendix C, which contains the final 

versions of all the files used. 

1. .info 

This file type is required whenever a user macro is 

used.  It contains the following information: 

•  Macro name 

•  Macro type – stateful, external, and pipelined 

•  Latency – a number stating how many clock cycles 
before valid output is generated by the macro. 

•  List of inputs and outputs 

The file type “.info” is a naming convention and is not re-

quired.  Any filename can be used as long as it matches 

that listed in the makefile. 

2. .box 

This is another file type that is required only when 

using a user-defined macro.  It is a Verilog style descrip-

tion of the input and output variables of the macro.  The 

Verilog description is necessary for both VHDL and Verilog 
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macros.  As with the .info type, the .box name is only by 

convention. 

3. .mc 

This file type is C code written to target the user 

logic.  All code in this file will be implemented in hard-

ware along with the user macro.  Using this file type, it 

is possible to write code for the hardware using only the 

high-level language C without using any user-defined macros 

defined with a hardware description language. 

4. .c 

This file type is regular C code which provides the 

interface between the operating system and the hardware 

code defined in the .mc file.  Code implemented in this 

file is executed on the Xeon processors. 

5. makefile 

This file is used by the command “make” when all the 

files are compiled and linked.  It contains all of the file 

names and paths used, as well as the desired final executa-

ble name.  Compiler flags and options can also be stated in 

this file. 

6. .vhd 

This file type is for VHDL macro files.  In general, 

it is safest to merge multiple files into one.  However, it 

is possible to build with separate files as long as they 

are listed in the proper order in the makefile.  The com-

piler appears to be single pass so the files must be in the 

order they are used, with the lowest order file listed 

first. 

7. Other Types 

Two other file types can be used by users programming 

the user logic:  .f, which is a Fortran file, and .v, which 
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is a Verilog file.  These file types were not used during 

this research. 

C. CODE DEVELOPMENT 

Porting of the macro code began with creation of the 

required support files previously mentioned.  Although the 

files are relatively small, creating them was non-trivial 

as there were no previous examples using VHDL macros.  The 

process was a painful series of trial and error, particu-

larly with the required contents of the .info and .box 

files.  The code went through ten major revisions, with 

three major versions, over a period of about six months. 

1.  Version 1.0 

The single-range-bin VHDL code was imported to the 

SRC-6E and all code modules were merged into a single .vhd 

file.  The required support files were first generated us-

ing some unrelated examples in the C Programming Guide and 

a lot of guessing.  The SRC data packing macros called com-

bine and split were used to pack and unpack the data in the 

.mc file into two memory banks for input and one for out-

put.  Much trial and error was attempted on this version, 

but it would never make to create an executable. 

2.  Version 1.1 

 After discussion with SRC technical support, some new 

changes were tested.  The .info and .box file format ques-

tions were mostly resolved in this version.  The order of 

declarations within the .vhd file was changed to make the 

main macro appear as the top level to the compiler.  The 

gain shifter code was modified to make it synthesizable.  

This version compiled to executable but caused unexplain-

able segmentation faults when run. 
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3.  Version 1.2 

In order to isolate the faults in this version, empty 

macros were made in VHDL consisting of only the interface 

information.  After determining the problem was in the sup-

port files, the original VHDL macro was restored.  Problems 

were isolated with misuse of the SRC packing macros and 

various other syntax errors.  After much further work and 

testing, this version created a working executable which 

produced the proper output expected for a single range bin 

on a 32 sample size input. 

4.  Version 2.0 

Encouraged by the success, a new version was created 

which attempted to implement four range bins.  The SRC 

packing macros were not used in this implementation because 

they could not combine vectors shorter than 8 bits without 

wasting the remaining space.  The VHDL macro uses 1-, 4-, 

5-, and 17-bit signals.  These odd sizes could not be effi-

ciently combined with the pre-built macros and all packing 

of data was implemented in the C program, combining all in-

put into two 64-bit words using a series of shifting and 

logic with masks.  The VHDL macro interface was also modi-

fied to support the changes.  This version created a work-

ing executable; however, some of the output data was incor-

rect. 

5.  Version 2.1 

In order to help identify where the problems were, the 

output format was modified in the .c program to display the 

outputs of all four range bins.  After several changes, the 

code began hanging when executed during the call to the MAP 

function.  On recommendation of the SRC technicians, the 

method in which the array sizes were calculated was modi-

fied to ensure the arrays were properly padded and aligned 
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on 32-bit memory boundaries as required.  The changes re-

solved the hanging problem but the output data was still 

incorrect. 

6.  Version 2.2 

At this point, the researchers were stumped and 

searching for any possible reasons why the output data was 

wrong.  The majority of the output was correct.  The code 

generated several correct values followed by a single in-

correct value.  The remaining output was correct up until a 

certain point before the end of the data where it all went 

bad.  Exploring all possibilities, it was discovered that 

the macro was failing the timing requirements to run within 

the 100-MHz clock.  No errors or warnings were produced by 

the SRC environment to state this.  The timing results are 

created along with many other files during the make proc-

ess.  For example, running the make process on Version 3.0 

of this research generates 54 files split over 3 directo-

ries.  Locating useful debugging information within these 

many files can be a chore.  How the timing failures were 

resolved will be discussed later, but they ended up not be-

ing the problem. 

7.  Version 2.3 

In order to troubleshoot the corrupt data problem, the 

16-bit adder code was removed, which allowed the direct 

output of each of the four range bins to appear in the out-

put.  The data generated by each of the range bins showed 

the same general format of being mostly correct but all go-

ing bad after a certain point.  Much attention was turned 

to the control logic at this point to see if it was the 

culprit but no errors could be found.  To help isolate the 

problem, the current version of the VHDL code was exported 

back to the Windows environment and it produced the correct 
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output.  At this point, the SRC-6E was incorrectly sus-

pected to have either a software or hardware bug, possibly 

in the memory transfers.  The software environment has a 

useful debugging mode called MAPTRACE which can be used to 

view the data before and after it is sent to the MAP.  Ob-

servations of the file generated by MAPTRACE showed that 

the data was being passed to and received by the MAP cor-

rectly. 

8.  Version 2.4 

This version still had the 16-bit adder removed.  Mi-

nor changes to the LUT and gain shifter were implemented in 

this version to ensure that they were fully synthesizable 

but they did not affect the output.  Troubleshooting with 

this version did not solve the problem but helped narrow 

the focus to the interface. Upon close examination of the 

interfaces it was noted that there were differences between 

the Windows version and the SRC version as to the way the 

data was packed in the SRC version.  After exporting the 

packed data to the Windows version, the code produced the 

same identical faulty output as the SRC version.  Since the 

two versions both produced the same identical output, it 

was determined that the problem had to be with the inter-

face and input data. 

9.  Version 2.5 

After closer inspection of the interface and the 

method used to pass in data, it was observed that the gain 

and phase shift signals were not being applied properly.  

This was an operational problem as the macro code was cor-

rect.  Modifying how the signals were applied fixed the 

problem with the faulty outputs.  At this point, the code 

was producing correct output and data collection was 

started on various sized data sets.  While collecting the 
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data, it was noted that a segmentation fault would occur 

above certain array sizes. 

10.  Version 3.0 

After discussion with SRC technical support, the code 

was modified to use a dynamic array allocation method which 

will be discussed later.  The memory usage changes cor-

rected the problem.  All extra unnecessary output was also 

removed in this version.  This final version was used to 

collect the data and is shown in Appendix C. 

D. SYNTHESIZABLITY 

Synthesizability is a style of hardware description 

language programming which allows the available layout 

tools to properly convert the code for hardware implementa-

tion on an FPGA.  During the design of the code, the Aldec 

software was only used to simulate the VHDL code.  There-

fore, it only tested the code for functionality and did not 

consider if the code could actually be implemented in hard-

ware.  Two of the original code blocks, the gain shifter 

and LUT, required modification once ported to the SRC-6E so 

the layout tool could define them in hardware.  The root 

cause of this was inexperience with both the VHDL language 

and the concept of synthesizability. 

1.  Gain Shifter Changes 

The gain shifter went through two changes.  Initially, 

the code was defined such that some of the variable bit 

widths were defined at run-time.  This worked fine during 

emulation but could not be implemented in hardware.  To 

make it work the code was written with a “case” statement 

that outlined specifically every possibility at runtime.  

Implementing this in hardware requires redundant logic and 

decoders to choose which portions to use during run time.  

Later, the code was streamlined again to remove an unneces-
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sary function call which provided some savings in the final 

hardware definition.  The function call, which converted 

data types from bit_vector to integer, also had an unneces-

sary variable length defined at run-time.  When removing 

the variability, it was determined that the entire function 

was not required and the “case” statement was modified to 

incorporate the function’s results directly. 

2.  LUT Changes 

The same function call that was made in the Gain 

Shifter was also used in the LUT.  Although this code 

worked properly, even with the variable length at runtime, 

the function call was unnecessary and similar methods were 

used to remove it from the code entirely.  The removal re-

sulted in a small space savings on the FPGA. 

E. TIMING FAILURES 

While debugging the code to determine the cause of 

some faulty output on the SRC-6E, it was noted that the 

macro was failing timing requirements for implementation 

with the 100-MHz clock.  The worst path through the logic 

was reported to be in the portion of the pipeline that con-

tained the 16-bit adder and that it exceeded the required 

time by 4.310 ns.  The cause of the poor timing was that 

the 16-bit adder was initially implemented with a simple 

design using ripple carry propagation, shown in Figure 7a. 
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Figure 7.   16-bit Adder Versions 

 

Several alternative designs were tested using carry 

look-ahead (CLAH) circuits to bring the delay time within 

that required for the 100-MHz clock.  Of note, these modi-

fications did not affect the output in any way and were not 

the solution to the problem being investigated at the time.  

The problem being investigated involved passing in improper 

input.  Despite the fact that the timing was failing, the 

circuits were still working properly, demonstrating that 

there was possibly some error within the timing calcula-

tions or more likely that there was additional padding en-

gineered within the design. 

1.  Single 8-bit CLAH 

A single 8-bit CLAH circuit was designed and placed in 

the center of the carry chain, which effectively splits the 

chain in half as shown in Figure 7b.  This improved the 
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time by almost 3 ns, but the circuit still failed timing by 

1.615 ns. 

2.  Three 4-bit CLAH 

A 4-bit CLAH circuit was designed and placed at three 

points in the carry chain.  The circuit chained groups of 

four carries to each other, as shown in Figure 7c.  This 

design slightly improved the timing but was still inade-

quate.  

3.  Two 4-bit and one 8-bit CLAH 

Finally, combinations of 4-bit and 8-bit CLAH circuits 

were used, which effectively split the 16 carries into four 

pieces, as shown in Figure 7d.  Initially, this design only 

improved the timing slightly which remained about 1.2 ns 

over what was required.  Coincidentally, at the time of 

this testing, an upgrade to the Carte software was re-

leased, version 1.5.  Remaking the same design after the 

upgrade created a result that was 0.401 ns under time.  The 

reason why the new version of the software caused the tim-

ing improvement remains a mystery.  No further modifica-

tions were made after this point. 

F. MEMORY ALLOCATION CHANGES 

Data passed into the MAP must be properly declared and 

aligned.  There are two methods to accomplish this.  The 

first method attempted used the SRC function “addr32.”  

This method uses fixed sized arrays declared at compile 

time.  The addr32 method worked fine up to fixed size ar-

rays of 166,581 but caused segmentation faults when exceed-

ing this value.  A trial and error approach was used to de-

termine the exact value at which the segmentation faults 

began.  The number 166,582 has no apparent meaning when re-

lated to array sizes and is a very unusual number to fail 

on.  Communication with SRC Computers, Inc. could not re-
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solve why this occurs.  However, using the second available 

method with the “cache_alligned_allocate” function allowed 

the array sizes to be declared correctly.  This method uses 

run-time allocation to declare the proper array sizes and 

was tested successfully up to array sizes of 500,000 64-bit 

elements.  Based on 4 megabytes of memory per bank, the 

theoretical limit is 524,288 64-bit values, but this upper 

limit was not tested. 

 

This chapter discussed the necessary changes required 

to port the VHDL code to the SRC-6E environment.  The next 

chapter will discuss benchmarking the SRC-6E, including 

data collection and analysis. 
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V. DATA COLLECTION AND TIMING ANALYSIS 

A. INTRODUCTION 

This chapter discusses the benchmarks and methods used 

for collection of data and its analysis during the re-

search.   

B. BENCHMARK TEST PLATFORMS 

1. C Program Executed on a Windows-based Machine 

The C program shown in Appendix A was compiled and 

executed on a 3-GHz Pentium 4 processor system with 2 giga-

bytes of RAM running the Windows XP Professional operating 

system.  The primary reason for this benchmark was to draw 

a comparison for cost-effectiveness between the high-cost 

special purpose SRC-6E system and a modern, off-the-shelf, 

general purpose computer. 

2. C Program Executed on the SRC-6E 

The same C program was compiled and run directly on 

the SRC-6E without using any of the custom hardware.  

Therefore, the data collected is based on the Linux operat-

ing system running on a 1-GHz Xeon 3 processor with 1.5 

gigabytes of RAM.  Although the system contains dual proc-

essors, only one thread is created while running the code 

and therefore it is believed that only one processor is 

utilized during the test.  The primary reason for this 

benchmark was to test if the algorithm itself is suitable 

for implementation on the user-logic. 

3. VHDL Code on the SRC-6E MAP 

The VHDL user macro and support files (shown in Appen-

dix C) were built and executed on the SRC-6E MAP.  Two tim-

ing data results were collected from each of the runs, the 

total run time for the entire execution and the time of 
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execution on the MAP only.  The two timing data results 

compare overhead time to actual execution on the MAP. 

C. TIMING DATA COLLECTION METHOD 

The input data sets were composed to represent a 

stream of intercepted radar samples.  Each data item con-

sists of two hexadecimal characters representing a five-bit 

intercepted radar sample.  The 32-sample-size data set is 

shown in Appendix C, which represents the decimal numbers 0 

to 31 in order.  All other-sized sample sets were created 

by duplicating and repeating the same 32 samples in order. 

By doubling each previous sample set size the following set 

sizes were created: 32, 64, 128, 256, 512, 1,024, 2,048, 

4,096, 8,192, 16,284, 32,786, 65,536, 131,072, and 262,144.  

The final set size of 500,000 was chosen as a convenient, 

large value that was close to the upper array size restric-

tion allowed by the four megabytes of memory per bank on 

the SRC-6E. 

Data from all test platforms were collected in order 

of increasing input set size.  All raw data used in the 

timing analysis can be observed in Appendix D.  The timing 

data was collected by running five consecutive runs of each 

input data set on each of the three benchmark platforms.  

The data for the Windows XP system were collected after a 

fresh reboot with all unnecessary programs closed.  It 

should be noted that observation of the system usage during 

execution of the code showed that the processor and memory 

were not fully utilized.  The reasons why the processor did 

not appear to be fully used and the methods Windows uses to 

measure performance are unknown.  The SRC-6E system data 

were collected by running the executables on side A when no 

other users were using the system. 
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D. TIMING DATA ANALYSIS 

1.  Methods 

The timing data are displayed in two types of graphs.  

The first is the average total time each test platform 

takes for each data set.  The average is taken of the five 

data points for each input set size.  The second is the av-

erage time per sample for each input set.  First, the aver-

age is taken over the five data points and then it is di-

vided by the input set size.  All graphs are connected with 

straight line approximations between data points. 

2.  Results 

Figure 8 shows the average total time vs. input set 

size for each of the four timing result sets. 
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Figure 8.   Comparison of Average Total Time 

 

Figure 9 shows the same data displayed on a semi-log scale 

for better clarity in the lower sample set size region.  

All four curves are fairly constant up to the 16,284 sample 
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size.  This result shows that, for small data set sizes, 

the overhead times inherent in the systems are much greater 

than the calculation times.  We consider overhead to be all 

the data file read/write operations and memory accesses re-

quired to prepare the data for calculations.  The SRC Macro 

MAP Call curve clearly shows the calculation time is insig-

nificant compared to the total processing time. 
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Figure 9.   Semi-Log Comparison of Average Total Time  

 

The SRC Macro MAP Call curve also shows the MAP execu-

tion time is extremely fast, even for very large data set 

sizes.  However, the SRC Macro Total curve shows the total 

execution time for the VHDL macro takes considerably 

longer.  The extra time represents delays in the system to 

prepare and transfer the data in and out of the MAP which 

cause the SRC execution time to be longer for all input set 

sizes, initially by an order of magnitude. 
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As the input set size is increased, we see the curves begin 

to converge.  Figure 10 shows a comparison of the average 

time per sample.  Figure 11 shows the same data on a semi-

log scale. 
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Figure 10.   Comparison of Average Time per Sample 

 

The overhead in the SRC Macro clearly dominates the graphs 

for smaller sample set sizes.  However, for larger sample 

set sizes, the overhead time is amortized over the total 

time to be nearly insignificant.  Figure 12 shows only the 

upper sample set size data to magnify the differences.  The 

SRC Macro Total time is approaching the other curves and 

presumably would eventually meet them if the sample set 

size could be further increased.  However, this is not pos-

sible with the current macro design due to the memory de-

sign of the SRC-6E hardware. 
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Average Time per Sample (Log Scale)
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Figure 11.   Semi-Log Comparison of Average Time per 
Sample 
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Figure 12.   Comparison of Average Time per Sample 
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3.  Conclusions 

The design of the VHDL macro running on the SRC-6E 

suffers from excessive overhead which makes it less effi-

cient than the C program which performs the same calcula-

tions.  Due to the memory size available to the user logic 

on the SRC-6E, the sample set size cannot be increased 

large enough to make the VHDL macro run efficiently.  The 

calculation time on the SRC user logic is extremely fast 

but this is irrelevant if a method cannot be developed to 

reduce the overhead.  

The C program running on Windows is faster at low sam-

ple set sizes due to the raw processing power of the faster 

clocked Pentium 4.  However, the slower Linux based SRC 

system catches up for larger sample set sizes and even ap-

pears to surpass the Pentium at the 500,000 sample set 

size.  It appears that the Linux operating system is more 

efficient than Windows for this particular algorithm on the 

SRC-6E.  However, the much greater cost of the SRC-6E does 

not make it a cost-effective solution for this algorithm.  

 
 

This chapter discussed benchmarking the SRC-6E, in-

cluding collection of data and analysis, and drew conclu-

sions on the results.  The next chapter draws conclusions 

on the SRC-6E, including difficulty of use and appropriate-

ness for the chosen algorithm.  Recommendations for future 

work are also presented.
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VI. CONCLUSIONS 

A. INTRODUCTION 

This chapter draws conclusions on the difficulty of 

use of the SRC-6E, appropriateness of the chosen algorithm 

for application on the SRC-6E, and gives recommendations 

for future work. 

B. DIFFICULTY OF USE 

1. Necessary Skills 

Programming the SRC-6E to use user-defined macros re-

quires knowledge of high-level programming languages, hard-

ware description languages, hardware component design, and 

synthesizability.  Relatively few people possess all of 

these skills to use the system effectively without first 

receiving significant training.  However, programming the 

system using only high-level languages of C or Fortran is 

possible which widens the potential user base to many more 

people.  Much more research needs to be performed to deter-

mine if either method produces more effective solutions. 

2. Experience Level 

The SRC-6E has a relatively steep learning curve.  

There are a few examples in the documentation and a very 

small body of work in place using the system.  The errors 

generated by the system during development are not intui-

tive and cannot be solved without previous experience with 

solving the same errors.  The SRC support staff are very 

helpful in solving specific code problems but are not 

forthcoming in the reasons or methods used to resolve them.  

There are no development tools in place to assist novice 

users in programming the system.  More research is required 

to see how much experience on the system is required to 

prevent and or recognize these types of errors quickly. 
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3. Development Time 

The development time to implement solutions on this 

system appears to be high, primarily due to the steep 

learning curve and lack of development tools.  This re-

search represents approximately one year of part-time work 

by a single, previously inexperienced person, of which 

about half the time was working with the SRC-6E.  It should 

be noted that many delays were present in the research that 

would not occur on a second attempt at testing the system, 

for example, scheduling user training and initial delivery 

of the system.  More research must be performed to further 

quantify the development time and see how it improves once 

a group of experienced repeat users is grown.  No research 

has yet been performed with large projects, employing mul-

tiple programmers, to see if the total project time can be 

reduced effectively. 

C. APPROPRIATENESS OF THIS ALGORITHM 

The chosen implementation of the false target radar 

imaging algorithm appears to be one that would benefit from 

a reconfigurable computer because it is pipelined and sup-

ports parallel processing.  However, implementation of the 

design with four or less range bins has been shown to lack 

the necessary parallelism required to fully utilize the 

hardware and make it effective.  Without increases in the 

memory size allocated for the user logic, implementation of 

four range bins on the SRC-6E is not an effective solution 

in terms of development time, processing time, or cost-

effectiveness. 

D. RECOMMENDATIONS FOR FUTURE WORK 

1. Develop Implementation of More Range Bins. 

The algorithm is not parallel enough with four or less 

range bins to make implementing it on the SRC-6E architec-
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ture an effective solution.  Expanding the interface to in-

stantiate and deliver data to more range bins at once may 

show a more drastic increase in performance versus other 

computing methods.  Rough estimates of FPGA usage show that 

16 range bins should fit in the user logic area.  However, 

rebuilding the interface to support this could be a chal-

lenge with the limited bandwidth provided by six 64-bit ar-

rays. 

2. Develop a More User-Friendly Programming Environ-
ment. 

As previously discussed, the SRC-6E lacks a custom 

code editing environment with modern features such as real 

time syntax checking.  Automated generation of some of the 

support files could also be implemented.  Project wizards 

could be created that ask a few questions and then create 

the skeletons of the support files for the project.  

Changes to one file that affect another could be automati-

cally corrected or at a minimum generate warnings. 

3. Testing Other Applications. 

The knowledge base of what types of applications do or 

do not work efficiently on this system is very small.  Many 

more algorithms need to be tested on the system.  Program-

ming the same algorithm with both the high level language 

method and the user macro method would also provide infor-

mation on which produces better results for different types 

of algorithms.  Cost and timing comparison to modern, read-

ily available computers should continue to be made. 



42 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



43 

APPENDIX A 

This appendix contains the C code written by Professor 

Douglas Fouts that was used as a standard for output cor-

rectness and as a source of timing data.  Slight modifica-

tions were made to provide for timing result output and in-

creased sample sizes.  The version presented was used on 

both the SRC-6E and the Windows XP platforms for timing 

analysis with no modifications. 

A. CHIP2_SIM.C 

/* Simulate the DIS-512 chip. */ 

/* Compile Command */ 

/* cc Chip2_Sim.c -lm */ 

/* Range bin phase increment data must be in the file phzinc.txt. */ 

/* Range bin amplitude scaling data must be in the file ampscal.txt. */ 

/* Pulse phase samples must be in the file phzsamp.txt. */ 

/* Output results are put into the file IandQout.txt */ 

/* Global Included Files */ 

#include <stdio.h> 

#include <math.h> 

#include <time.h> 

/* Global Defines */ 

#define rangebins 4     /* Number of range bins. */ 

#define phzsamps 500000     /* Maximum number of phase samples. */ 

/* Global Data Structures */ 

int phzincdat[rangebins],     /* Stores phase increments for each range 
bin. */ 

    ampscaldat[rangebins],     /* Stores amplitude scaling factors for 
each range bin. */ 

    Ipartres[phzsamps + rangebins][rangebins],     /* Stores partial 
results for each phase sample */ 

    Qpartres[phzsamps + rangebins][rangebins],         /*  in each 
range bin. */ 

    sintab[32], costab[32],     /* Sin and Cos lookup tables. */ 

    numofsamps;     /* Used to count number of samples read in from 
file phzsamp.txt. */ 
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/* Read in phase increment values for each range bin, */ 

/* and store the results in the array phzincdat.      */ 

rdphzinc() 

{ 

   /* Local Variables */ 

   FILE *filepnt; 

   int rbcnt; 

   /* Open the input file phzinc.txt. */  

   if ((filepnt = fopen("phzinc.txt", "r")) == NULL) 

      fprintf(stderr, "\n\nTERMINAL FAULT:  File phzinc.txt not 
found.\n\n"); 

   /* For each range bin. */ 

   for (rbcnt = 0; rbcnt < rangebins; rbcnt++) 

   { 

      fscanf(filepnt, "%x", &phzincdat[rbcnt]);     /* Read in phase 
increment value. */ 

   }   /* end of for loop */ 

   /* Close input file. */ 

   fclose(filepnt); 

}     /* End of function rdphzinc. */ 

 

/* Read in amplitude scaling values for each range bin, */ 

/* and store result in array ampscaldata.               */ 

rdampscal() 

{ 

   /* Local Variables */ 

   FILE *filepnt; 

   int rbcnt, inptampdat, tstampdat; 

 

   /* Open the input file ampscal.txt. */ 

   if ((filepnt = fopen("ampscal.txt", "r")) == NULL) 

      fprintf(stderr, "\n\nTERMINAL FAULT:  File ampscal.txt not 
found.\n\n"); 

   /* Read in amplitude scaling values for each range bin. */ 

   for (rbcnt = 0; rbcnt < rangebins; rbcnt++) 

   { 

      fscanf(filepnt, "%x", &inptampdat); 

      ampscaldat[rbcnt] = 0x00000001 & inptampdat; 
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   tstampdat = 0x00000001 & (inptampdat >> 1); 

      if (tstampdat == 1) 

      ampscaldat[rbcnt] = ampscaldat[rbcnt] + 2; 

      tstampdat = 0x00000001 & (inptampdat >> 2); 

         if (tstampdat == 1) 

         ampscaldat[rbcnt] = ampscaldat[rbcnt] + 3; 

      tstampdat = 0x00000001 & (inptampdat >> 3); 

         if (tstampdat == 1) 

         ampscaldat[rbcnt] = ampscaldat[rbcnt] + 4; 

   } 

   /* Close input file. */ 

   fclose(filepnt); 

}     /* End of function rdampscal. */ 

 

/* Initialize the global storage arrays. */ 

initarrays() 

{ 

   /* Local Variables */ 

   int sampnum, rbnum; 

 

   /* Initialize the partial result array. */ 

   for (sampnum = 0; sampnum < phzsamps; sampnum++) 

      for (rbnum = 0; rbnum < rangebins; rbnum++) 

   { 

    Ipartres[sampnum + rbnum][rbnum] = 0; 

          Qpartres[sampnum + rbnum][rbnum] = 0; 

   } 

   /* Initialize the sin table. */ 

   sintab[0] = 0x00000000; 

   sintab[1] = 0x00000019; 

   sintab[2] = 0x00000031; 

   sintab[3] = 0x00000047; 

   sintab[4] = 0x0000005A; 

   sintab[5] = 0x0000006A; 

   sintab[6] = 0x00000075; 

   sintab[7] = 0x0000007D; 

   sintab[8] = 0x0000007F; 
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   sintab[9] = 0x0000007D; 

   sintab[10] = 0x00000075; 

   sintab[11] = 0x0000006A; 

   sintab[12] = 0x0000005A; 

   sintab[13] = 0x00000047; 

   sintab[14] = 0x00000031; 

   sintab[15] = 0x00000019; 

   sintab[16] = 0x00000000; 

   sintab[17] = 0xFFFFFFE7; 

   sintab[18] = 0xFFFFFFCF; 

   sintab[19] = 0xFFFFFFB9; 

   sintab[20] = 0xFFFFFFA6; 

   sintab[21] = 0xFFFFFF96; 

   sintab[22] = 0xFFFFFF8B; 

   sintab[23] = 0xFFFFFF83; 

   sintab[24] = 0xFFFFFF81; 

   sintab[25] = 0xFFFFFF83; 

   sintab[26] = 0xFFFFFF8B; 

   sintab[27] = 0xFFFFFF96; 

   sintab[28] = 0xFFFFFFA6; 

   sintab[29] = 0xFFFFFFB9; 

   sintab[30] = 0xFFFFFFCF; 

   sintab[31] = 0xFFFFFFE7; 

   /* Initialize the cos table. */ 

   costab[0] = 0x0000007F; 

   costab[1] = 0x0000007D; 

   costab[2] = 0x00000075; 

   costab[3] = 0x0000006A; 

   costab[4] = 0x0000005A; 

   costab[5] = 0x00000047; 

   costab[6] = 0x00000031; 

   costab[7] = 0x00000019; 

   costab[8] = 0x00000000; 

   costab[9] = 0xFFFFFFE7; 

   costab[10] = 0xFFFFFFCF; 

   costab[11] = 0xFFFFFFB9; 

   costab[12] = 0xFFFFFFA6; 
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   costab[13] = 0xFFFFFF96; 

   costab[14] = 0xFFFFFF8B; 

   costab[15] = 0xFFFFFF83; 

   costab[16] = 0xFFFFFF81; 

   costab[17] = 0xFFFFFF83; 

   costab[18] = 0xFFFFFF8B; 

   costab[19] = 0xFFFFFF96; 

   costab[20] = 0xFFFFFFA6; 

   costab[21] = 0xFFFFFFB9; 

   costab[22] = 0xFFFFFFCF; 

   costab[23] = 0xFFFFFFE7; 

   costab[24] = 0x00000000; 

   costab[25] = 0x00000019; 

   costab[26] = 0x00000031; 

   costab[27] = 0x00000047; 

   costab[28] = 0x0000005A; 

   costab[29] = 0x0000006A; 

   costab[30] = 0x00000075; 

   costab[31] = 0x0000007D; 

}     /* End of function initarrays. */ 

 

/* Read in pulse phase samples and calculate partial */ 

/* results for each range bin and store result in    */ 

/* the arrays Ipartres and Qpartres.                 */ 

rdphzsamp() 

{ 

   /* Local Variables */ 

   FILE *filepnt; 

   int phzdat, phzaddout, ILUTOut, QLUTOut, IGainOut, QGainOut, rbcnt; 

 

   /* Open the input file phzsamp.txt. */ 

   if ((filepnt = fopen("phzsamp.txt", "r")) == NULL) 

      fprintf(stderr, "\n\nTERMINAL FAULT:  File phzsamp.txt not 
found.\n\n"); 

   /* Process each phase sample in the file phzsamp.txt. */ 

   numofsamps = 0; 

   while (fscanf(filepnt, "%x", &phzdat) != EOF) 

   { 
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      /* Process the new phase sample in each range bin and store the 
result. */ 

      for (rbcnt = 0; rbcnt < rangebins; rbcnt++) 

      { 

         /* Increment the phase. */ 

         phzaddout = phzdat + phzincdat[rbcnt]; 

         phzaddout = phzaddout & 0x0000001F; 

         /* Calculate I for each range bin and store the result. */ 

         ILUTOut = costab[phzaddout]; 

         IGainOut = ILUTOut << ampscaldat[rbcnt]; 

   if (IGainOut >= 0) 

    IGainOut = IGainOut >> 5; 

   else 

    IGainOut = (IGainOut >> 5) | 0xFFFFE000; 

   IGainOut = IGainOut & 0x0000FFFF; 

         Ipartres[numofsamps + rbcnt][rbcnt] = IGainOut; 

         /* Calculate Q for each range bin and store the result. */ 

         QLUTOut = sintab[phzaddout]; 

         QGainOut = QLUTOut << ampscaldat[rbcnt]; 

   if (QGainOut >= 0) 

    QGainOut = QGainOut >> 5; 

   else 

    QGainOut = (QGainOut >> 5) | 0xFFFFE000; 

   QGainOut = QGainOut & 0x0000FFFF; 

         Qpartres[numofsamps + rbcnt][rbcnt] = QGainOut; 

      } 

      /* Increment the number of phase samples counter. */ 

      numofsamps++; 

   }     /* End of outside while loop. */ 

   /* Close input file. */ 

   fclose(filepnt); 

}     /* End of function rdphzsamp. */ 

 

/* Sum partial results in the array partres and write */ 

/* final sums to the output file IandQout.txt.        */ 

sumpartres() 

{ 

   /* Local Variables */ 
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   FILE *filepnt; 

   int sampnum, rbnum, finIout, finQout, IOF, QOF, signofA, signofB, 
signofsum; 

   /* Open output file for writing. */ 

   if ((filepnt = fopen("IandQout.txt", "w")) == NULL) 

      fprintf(stderr, "\n\nTERMINAL FAULT:  File IandQout.txt cannot be 
written.\n\n"); 

   /* put headers in output file */ 

   fprintf(filepnt, " I_OF_Out    Iout    Q_OF_Out   Qout\n"); 

   fprintf(filepnt, " --------   ------   --------   ------\n\n"); 

   /* for all phase samples that were read in */ 

   for (sampnum = 0; sampnum < (numofsamps + rangebins - 1); sampnum++) 

   { 

      finIout = finQout = IOF = QOF = 0;     /* initialize final result 
*/ 

   rbnum = rangebins - 1; 

      while (rbnum >= 0) 

      { 

    signofA = (finIout >> 15) & 0x00000001; 

    signofB = (Ipartres[sampnum][rbnum] >> 15) & 0x00000001; 

          finIout = (finIout + Ipartres[sampnum][rbnum]) & 0x0000FFFF; 

    signofsum = (finIout >> 15) & 0x00000001; 

    if ((signofA == 0) && (signofB == 0) && (signofsum == 1)) 

     IOF = 1; 

          if ((signofA == 1) && (signofB == 1) && (signofsum == 0)) 

     IOF = 1; 

 

          signofA = (finQout >> 15) & 0x00000001; 

    signofB = (Qpartres[sampnum][rbnum] >> 15) & 0x00000001; 

          finQout = (finQout + Qpartres[sampnum][rbnum]) & 0x0000FFFF; 

          signofsum = (finQout >> 15) & 0x00000001; 

    if ((signofA == 0) && (signofB == 0) && (signofsum == 1)) 

     QOF = 1; 

          if ((signofA == 1) && (signofB == 1) && (signofsum == 0)) 

     QOF = 1; 

          rbnum--; 

      } 

      /* Print out result to output file. */ 
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      fprintf(filepnt, "    %d       0x%04X      %d       0x%04X\n", 
IOF, finIout, QOF, finQout); 

   }   /* end of outer for loop */  

   /* Close output file. */ 

   fclose (filepnt); 

}     /* End of function sumpartres. */ 

 

main() 

{ 

   /* Local Variables */ 

 clock_t start, finish; 

 double duration; 

 FILE *filepnt; 

 start=clock(); 

   /* Read in phase increment data for each range bin. */ 

   rdphzinc(); 

   /* Read in amplitude scaling data for each range bin. */ 

   rdampscal(); 

   /* Initialize global storage arrays. */ 

   initarrays(); 

   /* Read in pulse phase samples and calculate partial results. */ 

   rdphzsamp(); 

   /* Sum partial results and output sums. */ 

   sumpartres(); 

   finish=clock(); 

   duration = (double)(finish - start) / CLOCKS_PER_SEC; 

   /* Open output file for writing. */ 

   if ((filepnt = fopen("Time.txt", "w")) == NULL) 

      fprintf(stderr, "\n\nTERMINAL FAULT:  File Time.txt cannot be 
written.\n\n"); 

      /* Print out result to output file. */ 

      fprintf(filepnt, "Time to complete %i samples: %2.4f seconds.\n", 
numofsamps, duration); 

   /* Close output file. */ 

   fclose (filepnt); 

}     /* End of main. */ 
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APPENDIX B 

This appendix contains the versions of the code before 

they were ported to the SRC-6E. 

 

A. D-TYPE FLIP FLOP 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity DFlipFlop is 

 port (CLK, LD, RESET, D: in bit; 

 Q: inout bit; Qnot: out bit := '1'); 

end DFLipFlop;        

architecture Equations of DFlipFlop is 

begin 

 process (CLK, LD, RESET) 

 begin 

  if CLK='1' and CLK'EVENT  then 

   if  RESET='1' then 

    Q <= '0'; 

   elsif LD='1' then 

    Q <= D; 

   end if; 

  end if; 

 end process; 

 Qnot <= not Q; 

end Equations; 

 

B. 5-BIT REGISTER 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity Register5 is 

 port (CLK,LD,RESET: in bit; D5: in bit_vector (4 downto 0); 

       Q5: inout bit_vector (4 downto 0); Q5not: out bit_vector (4 
downto 0)); 

end Register5;         

architecture Register5 of Register5 is  
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component DFlipFlop 

 port (CLK, LD, RESET, D: in bit; 

 Q: inout bit; Qnot: out bit); 

end component; 

begin 

 DFF0: DFlipFlop port map (CLK, LD, RESET, D5(0), Q5(0), 
Q5not(0));  

 DFF1: DFlipFlop port map (CLK, LD, RESET, D5(1), Q5(1), 
Q5not(1)); 

 DFF2: DFlipFlop port map (CLK, LD, RESET, D5(2), Q5(2), 
Q5not(2)); 

 DFF3: DFlipFlop port map (CLK, LD, RESET, D5(3), Q5(3), 
Q5not(3)); 

 DFF4: DFlipFlop port map (CLK, LD, RESET, D5(4), Q5(4), 
Q5not(4)); 

end Register5; 

 
C. 8-BIT REGISTER 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity Register8 is 

 port (CLK, LD, RESET: in bit; D8: in bit_vector (7 downto 0); 

 Q8: inout bit_vector (7 downto 0); Q8not: out bit_vector (7 
downto 0)); 

end Register8; 

architecture Register8 of Register8 is  

component DFlipFlop 

 port (CLK, LD, RESET, D: in bit; 

 Q: inout bit; Qnot: out bit); 

end component;         

begin 

 DFF0: DFlipFlop port map (CLK, LD, RESET, D8(0), Q8(0), 
Q8not(0));  

 DFF1: DFlipFlop port map (CLK, LD, RESET, D8(1), Q8(1), 
Q8not(1)); 

 DFF2: DFlipFlop port map (CLK, LD, RESET, D8(2), Q8(2), 
Q8not(2)); 

 DFF3: DFlipFlop port map (CLK, LD, RESET, D8(3), Q8(3), 
Q8not(3)); 

 DFF4: DFlipFlop port map (CLK, LD, RESET, D8(4), Q8(4), 
Q8not(4));  
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 DFF5: DFlipFlop port map (CLK, LD, RESET, D8(5), Q8(5), 
Q8not(5)); 

 DFF6: DFlipFlop port map (CLK, LD, RESET, D8(6), Q8(6), 
Q8not(6)); 

 DFF7: DFlipFlop port map (CLK, LD, RESET, D8(7), Q8(7), 
Q8not(7)); 

end Register8; 

 
D. 13-BIT REGISTER 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity Register13 is 

 port (CLK, LD, RESET: in bit; D13: in bit_vector (12 downto 0); 

 Q13: inout bit_vector (12 downto 0); Q13not: out bit_vector (12 
downto 0)); 

end Register13; 

architecture Register13 of Register13 is  

component DFlipFlop 

 port (CLK, LD, RESET, D: in bit; 

 Q: inout bit; Qnot: out bit); 

end component;         

begin 

 DFF0: DFlipFlop port map (CLK, LD, RESET, D13(0), Q13(0), 
Q13not(0));  

 DFF1: DFlipFlop port map (CLK, LD, RESET, D13(1), Q13(1), 
Q13not(1)); 

 DFF2: DFlipFlop port map (CLK, LD, RESET, D13(2), Q13(2), 
Q13not(2)); 

 DFF3: DFlipFlop port map (CLK, LD, RESET, D13(3), Q13(3), 
Q13not(3)); 

 DFF4: DFlipFlop port map (CLK, LD, RESET, D13(4), Q13(4), 
Q13not(4));  

 DFF5: DFlipFlop port map (CLK, LD, RESET, D13(5), Q13(5), 
Q13not(5)); 

 DFF6: DFlipFlop port map (CLK, LD, RESET, D13(6), Q13(6), 
Q13not(6)); 

 DFF7: DFlipFlop port map (CLK, LD, RESET, D13(7), Q13(7), 
Q13not(7));   

 DFF8: DFlipFlop port map (CLK, LD, RESET, D13(8), Q13(8), 
Q13not(8)); 

 DFF9: DFlipFlop port map (CLK, LD, RESET, D13(9), Q13(9), 
Q13not(9)); 
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 DFF10: DFlipFlop port map (CLK, LD, RESET, D13(10), Q13(10), 
Q13not(10));  

 DFF11: DFlipFlop port map (CLK, LD, RESET, D13(11), Q13(11), 
Q13not(11));  

 DFF12: DFlipFlop port map (CLK, LD, RESET, D13(12), Q13(12), 
Q13not(12));  

end Register13; 

 

E. 17-BIT REGISTER 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity Register17 is 

 port (CLK, LD, RESET: in bit; D17: in bit_vector (16 downto 0); 

 Q17: inout bit_vector (16 downto 0); Q17not: out bit_vector (16 
downto 0)); 

end Register17; 

architecture Register17 of Register17 is  

component DFlipFlop 

 port (CLK, LD, RESET,D: in bit; 

 Q: inout bit; Qnot: out bit); 

end component;         

begin 

 DFF0: DFlipFlop port map (CLK, LD, RESET, D17(0), Q17(0), 
Q17not(0));  

 DFF1: DFlipFlop port map (CLK, LD, RESET, D17(1), Q17(1), 
Q17not(1)); 

 DFF2: DFlipFlop port map (CLK, LD, RESET, D17(2), Q17(2), 
Q17not(2)); 

 DFF3: DFlipFlop port map (CLK, LD, RESET, D17(3), Q17(3), 
Q17not(3)); 

 DFF4: DFlipFlop port map (CLK, LD, RESET, D17(4), Q17(4), 
Q17not(4));  

 DFF5: DFlipFlop port map (CLK, LD, RESET, D17(5), Q17(5), 
Q17not(5)); 

 DFF6: DFlipFlop port map (CLK, LD, RESET, D17(6), Q17(6), 
Q17not(6)); 

 DFF7: DFlipFlop port map (CLK, LD, RESET, D17(7), Q17(7), 
Q17not(7));   

 DFF8: DFlipFlop port map (CLK, LD, RESET, D17(8), Q17(8), 
Q17not(8)); 

 DFF9: DFlipFlop port map (CLK, LD, RESET, D17(9), Q17(9), 
Q17not(9)); 
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 DFF10: DFlipFlop port map (CLK, LD, RESET, D17(10), Q17(10), 
Q17not(10));  

 DFF11: DFlipFlop port map (CLK, LD, RESET, D17(11), Q17(11), 
Q17not(11));  

 DFF12: DFlipFlop port map (CLK, LD, RESET, D17(12), Q17(12), 
Q17not(12));  

 DFF13: DFlipFlop port map (CLK, LD, RESET, D17(13), Q17(13), 
Q17not(13));  

 DFF14: DFlipFlop port map (CLK, LD, RESET, D17(14), Q17(14), 
Q17not(14));  

 DFF15: DFlipFlop port map (CLK, LD, RESET, D17(15), Q17(15), 
Q17not(15));  

 DFF16: DFlipFlop port map (CLK, LD, RESET, D17(16), Q17(16), 
Q17not(16));  

end Register17; 

 

F. FULL ADDER 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity FullAdder is  

 port (X, Y, Cin: in bit; 

 Cout, Sum: out bit); 

end FullAdder; 

architecture Equations of FullAdder is  

begin 

 Sum <= X xor Y xor Cin; 

 Cout <= (X and Y) or (X and Cin) or (Y and Cin); 

end Equations; 

 

G. FULL ADDER WITH OVERFLOW SIGNAL 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity FullAdderOV is 

 port (Ci, Cout, OVin: in bit; 

    Co, OVout: out bit); 

end FullAdderOV; 

architecture Equations of FullAdderOV is 

begin 

 Co <= Cout; 
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 OVout <= OVin or (Ci xor Cout); 

end Equations; 

 
H. 5-BIT ADDER 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity Adder5 is 

 port (A, B: in bit_vector(4 downto 0); Ci: in bit; 

    S: out bit_vector(4 downto 0); Co: out bit); 

end Adder5; 

architecture Adder5 of Adder5 is 

component FullAdder 

 port (X, Y, Cin: in bit; 

 Cout, Sum: out bit); 

end component; 

signal C: bit_vector(4 downto 1); 

begin 

 FA0: FullAdder port map (A(0), B(0), Ci, C(1), S(0)); 

 FA1: FullAdder port map (A(1), B(1), C(1), C(2), S(1)); 

 FA2: FullAdder port map (A(2), B(2), C(2), C(3), S(2)); 

 FA3: FullAdder port map (A(3), B(3), C(3), C(4), S(3)); 

 FA4: FullAdder port map (A(4), B(4), C(4), Co, S(4)); 

end Adder5; 

 
I. 16-BIT ADDER WITH OVERFLOW SIGNAL 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity Adder16 is 

 port (A, B: in bit_vector(15 downto 0); Ci, OVin: in bit; 

    S: out bit_vector(16 downto 0); Co: out bit); 

end Adder16;   --bit 16 of S is overflow 

architecture Adder16 of Adder16 is 

component FullAdder 

 port (X, Y, Cin: in bit; 

 Cout, Sum: out bit); 

end component; 

component FullAdderOV 

 port (Ci, Cout, OVin: in bit; 
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    Co, OVout: out bit); 

end component; 

signal C: bit_vector(16 downto 1); 

begin 

 FA0: FullAdder port map (A(0), B(0), Ci, C(1), S(0)); 

 FA1: FullAdder port map (A(1), B(1), C(1), C(2), S(1)); 

 FA2: FullAdder port map (A(2), B(2), C(2), C(3), S(2)); 

 FA3: FullAdder port map (A(3), B(3), C(3), C(4), S(3)); 

 FA4: FullAdder port map (A(4), B(4), C(4), C(5), S(4)); 

 FA5: FullAdder port map (A(5), B(5), C(5), C(6), S(5)); 

 FA6: FullAdder port map (A(6), B(6), C(6), C(7), S(6)); 

 FA7: FullAdder port map (A(7), B(7), C(7), C(8), S(7)); 

 FA8: FullAdder port map (A(8), B(8), C(8), C(9), S(8)); 

 FA9: FullAdder port map (A(9), B(9), C(9), C(10), S(9)); 

 FA10: FullAdder port map (A(10), B(10), C(10), C(11), S(10)); 

 FA11: FullAdder port map (A(11), B(11), C(11), C(12), S(11)); 

 FA12: FullAdder port map (A(12), B(12), C(12), C(13), S(12)); 

 FA13: FullAdder port map (A(13), B(13), C(13), C(14), S(13)); 

 FA14: FullAdder port map (A(14), B(14), C(14), C(15), S(14)); 

 FA15: FullAdder port map (A(15), B(15), C(15), C(16), S(15)); 

 FAOV: FullAdderOV port map (C(15), C(16), OVin, Co, S(16)); 

end Adder16; 

 
J. LUT 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

use bit_pack.all; 

entity ROMLUT is  

port (SIN, COS:out bit_vector(8 downto 1); 

   FIVEBITS:in bit_vector(5 downto 1)); 

end ROMLUT; 

architecture ROMLUT of ROMLUT is 

type ROMLUT is array (0 to 31) of bit_vector(15 downto 0); 

constant FSM_ROMLUT:  ROMLUT :=  -- 8 bits of sine and 8 bits of cosine 

("0000000001111111","0001100101111101","0011000101110101","010001110110
1010","0101101001011010","0110101001000111","0111010100110001","0111110
100011001","0111111100000000","0111110111100111","0111010111001111","01
10101010111001","0101101010100110","0100011110010110","0011000110001011
","0001100110000011","0000000010000001","1110011110000011","11001111100
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01011","1011100110010110","1010011010100110","1001011010111001","100010
1111001111","1000001111100111","1000000100000000","1000001100011001","1
000101100110001","1001011001000111","1010011001011010","101110010110101
0","1100111101110101","1110011101111101"); 

begin 

 process (FIVEBITS) 

 variable ROMLUTValue: bit_vector(15 downto 0); 

 begin 

  ROMLUTValue:= FSM_ROMLUT(vec2int(FIVEBITS)); 

  SIN <= ROMLUTValue(15 downto 8); 

  COS <= ROMLUTValue(7 downto 0); 

 end process; 

end ROMLUT; 

 
K. CONTROL LOGIC BLOCK 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity ControlLogic is 

 port (ODVin, URB, PSVin, CLK, OPER: in bit; 

    CLR13, CLR17: out bit := '1'; ODVout, PSVout: out bit); 

end ControlLogic; 

architecture ControlLogic of ControlLogic is 

component DFlipFlop 

 port (CLK, LD, RESET, D: in bit; 

 Q: inout bit; Qnot: out bit); 

end component;          

signal 
RESET,D1,Q1,Q1Not,D2,Q2,Q2Not,D3,Q3,Q3Not,D4,Q4,Q4Not,PSVD,PSVQ,PSVQNot
:bit; 

begin 

 RESET <= '0'; 

 PSVFF: DFlipFlop port map (CLK, OPER, RESET, PSVD, PSVQ, 
PSVQNot); 

 DFF1: DFLipFlop port map(CLK, OPER, RESET, D1, Q1, Q1Not);  

 DFF2: DFLipFlop port map(CLK, OPER, RESET, D2, Q2, Q2Not); 

 DFF3: DFLipFlop port map(CLK, OPER, RESET, D3, Q3, Q3Not); 

 DFF4: DFLipFlop port map(CLK, OPER, RESET, D4, Q4, Q4Not); 

 process (URB, ODVin, PSVin) 

 begin 

  PSVD <= PSVin; 
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  D1 <= URB and PSVQ; 

  D2 <= Q1; 

  D3 <= ODVin or Q2; 

  D4 <= Q3; 

  CLR13 <= Q2Not; 

  CLR17 <= Q3Not; 

  PSVout <= PSVQ; 

  ODVout <= Q4; 

 end process; 

end ControlLogic; 

 
L. SHIFTER 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

use bit_pack.all; 

entity GainShifter is 

 port (Control:in bit_vector(4 downto 1); Data: in bit_vector(8 
downto 1); 

 Output: out bit_vector(13 downto 1)); 

end GainShifter; 

architecture GainShifter of GainShifter is 

begin 

 process (Control, Data) 

 variable C, shift, resolution, DataStop, OutStart, Out-
Stop:integer; 

 variable Ones:bit_vector(13 downto 1) :="1111111111111"; 

 begin  

  C := vec2int(Control); 

  case C is 

   when 0 to 2 => shift := C; 

   resolution := C+3; 

   when 3 to 4 => shift := 3; 

   resolution :=6; 

   when 5 to 7 => shift := C-1; 

   if C=5 then resolution :=7; 

   else resolution :=8; 

   end if; 

   when 8 to 10 => shift := C-4;  
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   if C=8 then resolution :=7; 

   else resolution :=8; 

   end if; 

   when 11 to 12 => shift := 7; 

   resolution :=8; 

   when 13 to 15 => shift := C-5; 

   resolution :=8; 

   when others => -- summon blue screen of death 

  end case; 

  DataStop:=9-resolution; 

  OutStart:=3+shift;    

  OutStop:=Outstart-resolution+1; 

  Output <= "0000000000000";  

  Output(OutStart downto OutStop) <= Data (8 downto DataS-
top); 

  if Data(8)='1' then --need to preserve the sign bit 
here  

   Output(13 downto resolution) <= Ones(13 downto reso-
lution); 

  end if; 

 end process; 

end GainShifter; 

 
M. ONE RANGE BIN 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity FakeRadarChip is      

 port (PhaseSamp, PhaseInc: in bit_vector (5 downto 1); Gain: in 
bit_vector (4 downto 1); 

 BinSelect: in bit_vector (9 downto 1); CLK, ODVin, URB, PSVin, 
OPER, PRB, UNP: in bit; 

 OtherBinDataSIN, OtherBinDataCOS: in bit_vector (17 downto 1); 

 Q, I: out bit_vector (17 downto 1); ODVout, PSVout: out bit; 
DRFM: out bit_vector (5 downto 1)); 

end FakeRadarChip; 

architecture FakeRadarChip of FakeRadarChip is 

component Register5 is 

 port (CLK, LD, RESET: in bit; D5: in bit_vector (4 downto 0); 

       Q5: inout bit_vector (4 downto 0); Q5not: out bit_vector (4 
downto 0)); 
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end component; 

component Register8 is 

 port (CLK, LD, RESET: in bit; D8: in bit_vector (7 downto 0); 

 Q8: inout bit_vector (7 downto 0); Q8not: out bit_vector (7 
downto 0)); 

end component; 

component Register13 is 

 port (CLK, LD, RESET: in bit; D13: in bit_vector (12 downto 0); 

 Q13: inout bit_vector (12 downto 0); Q13not: out bit_vector (12 
downto 0)); 

end component; 

component Register17 is 

 port (CLK, LD, RESET: in bit; D17: in bit_vector (16 downto 0); 

 Q17: inout bit_vector (16 downto 0); Q17not: out bit_vector (16 
downto 0)); 

end component;   

component Adder5 is 

 port (A, B: in bit_vector(4 downto 0); Ci: in bit; 

    S: out bit_vector(4 downto 0); Co: out bit); 

end component; 

component Adder16 is 

 port (A, B: in bit_vector(15 downto 0); Ci, OVin: in bit; 

    S: out bit_vector(16 downto 0); Co: out bit); 

end component; 

component ROMLUT is  

port (SIN, COS:out bit_vector(1 to 8); 

   FIVEBITS:in bit_vector(1 to 5)); 

end component; 

component GainShifter is 

 port (Control:in bit_vector(4 downto 1); Data: in bit_vector(8 
downto 1); 

 Output: out bit_vector(13 downto 1)); 

end component; 

component ControlLogic is 

 port (ODVin, URB, PSVin, CLK, OPER: in bit; 

   CLR13, CLR17, ODVout, PSVout: out bit); 

end component; 
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signal 
QOutReg1,QNotOutReg1,QOutReg2,QNotOutReg2,QOutReg3,QNotOutReg3,QOutReg4
,QNotOutReg4, 

 QOutReg5,QNotOutReg5,QOutReg6,QNotOutReg6,OutAdd1: bit_vector (5 
downto 1);  

signal QOutReg7,QNotOutReg7,QOutReg8,QNotOutReg8, LUTSIN, LUTCOS: 
bit_vector (8 downto 1); 

signal QOutReg9,QNotOutReg9,QOutReg10,QNotOutReg10, OutShiftSIN, Out-
ShiftCOS: bit_vector (13 downto 1); 

signal 
QOutReg11,QNotOutReg11,QOutReg12,QNotOutReg12,QOutReg13,QNotOutReg13,QO
utReg14,QNotOutReg14, 

OutAdd2, OutAdd3: bit_vector (17 downto 1); 

signal InputAdder2, InputAdder3: bit_vector (16 downto 1); 

signal LD, CLR5, CLR8, CLR13, CLR17, Ci, Co1, Co2, Co3: bit; 

signal InReg5: bit_vector (5 downto 1); 

begin      

 CLR5 <= '0'; 

 CLR8 <= '0'; 

 Ci <= '0'; 

 LD <= OPER; 

 InReg5(4 downto 1) <= Gain (4 downto 1); 

 InReg5(5) <= URB; 

 Reg1: Register5 port map(CLK, LD, CLR5, PhaseInc(5 downto 1), 
QOutReg1(5 downto 1), QNotOutReg1(5 downto 1)); 

 Reg2: Register5 port map(CLK, LD, CLR5, QOutReg1(5 downto 1), 
QOutReg2(5 downto 1), QNotOutReg2(5 downto 1));  

 Reg3: Register5 port map(CLK, LD, CLR5, PhaseSamp(5 downto 1), 
QOutReg3(5 downto 1), QNotOutReg3(5 downto 1)); 

 Add1: Adder5 port map (QOutReg2,QOutReg3, Ci, OutAdd1(5 downto 
1), Co1); 

 Reg4: Register5 port map(CLK, LD, CLR5, OutAdd1(5 downto 1), 
QOutReg4(5 downto 1), QNotOutReg4(5 downto 1)); 

 LUT: ROMLUT port map (LUTSIN(8 downto 1),LUTCOS(8 downto 
1),QOutReg4(5 downto 1)); 

 Reg5: Register5 port map(CLK, LD, CLR5, InReg5(5 downto 1), 
QOutReg5(5 downto 1), QNotOutReg5(5 downto 1)); 

 Reg6: Register5 port map(CLK, LD, CLR5, QOutReg5(5 downto 1), 
QOutReg6(5 downto 1), QNotOutReg6(5 downto 1)); 

 Reg7: Register8 port map(CLK, LD, CLR8, LUTSIN(8 downto 1), 
QOutReg7(8 downto 1), QNotOutReg7(8 downto 1)); 

 Reg8: Register8 port map(CLK, LD, CLR8, LUTCOS(8 downto 1), 
QOutReg8(8 downto 1), QNotOutReg8(8 downto 1)); 
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 Shift1: GainShifter port map (QOutReg6(4 downto 1),QOutReg7(8 
downto 1),OutShiftSIN(13 downto 1)); 

 Shift2: GainShifter port map (QOutReg6(4 downto 1),QOutReg8(8 
downto 1),OutShiftCOS(13 downto 1)); 

 Reg9: Register13 port map(CLK, LD, CLR13, OutShiftSIN(13 downto 
1), QOutReg9(13 downto 1), QNotOutReg9(13 downto 1)); 

 Reg10: Register13 port map(CLK, LD, CLR13, OutShiftCOS(13 downto 
1), QOutReg10(13 downto 1), QNotOutReg10(13 downto 1));  

 Reg11: Register17 port map(CLK, LD, '0', OtherBinDataSIN(17 
downto 1), QOutReg11(17 downto 1), QNotOutReg11(17 downto 1));  

 Reg12: Register17 port map(CLK, LD, '0', OtherBinDataCOS(17 
downto 1), QOutReg12(17 downto 1), QNotOutReg12(17 downto 1));  

 Add2: Adder16 port map (InputAdder2, QOutReg11(16 downto 1), Ci, 
QOutReg11(17), OutAdd2(17 downto 1),Co2); 

 Add3: Adder16 port map (InputAdder3, QOutReg12(16 downto 1), Ci, 
QOutReg12(17), OutAdd3(17 downto 1),Co3); 

 Reg13: Register17 port map(CLK, LD, CLR17, OutAdd2(17 downto 1), 
QOutReg13(17 downto 1), QNotOutReg13(17 downto 1)); 

 Reg14: Register17 port map(CLK, LD, CLR17, OutAdd3(17 downto 1), 
QOutReg14(17 downto 1), QNotOutReg14(17 downto 1)); 

 Control: ControlLogic port map (ODVin, URB, PSVin, CLK, OPER, 
CLR13, CLR17, ODVout, PSVout); 

 InputAdder2(13 downto 1) <= QOutReg9(13 downto 1); 

 InputAdder2(14) <= QOutReg9(13); 

 InputAdder2(15) <= QOutReg9(13); 

 InputAdder2(16) <= QOutReg9(13); 

 InputAdder3(13 downto 1) <= QOutReg10(13 downto 1); 

 InputAdder3(14) <= QOutReg10(13); 

 InputAdder3(15) <= QOutReg10(13); 

 InputAdder3(16) <= QOutReg10(13); 

 DRFM(5 downto 1) <= QOutReg3(5 downto 1); 

 Q <= QOutReg13; 

 I <= QOutReg14; 

end FakeRadarChip; 

 
N. TWO RANGE BINS 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity TwoBins is 

 port (PhaseSamp, PhaseInc0, PhaseInc1: in bit_vector (5 downto 
1); 
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 Gain0, Gain1: in bit_vector (4 downto 1);BinSelect0, BinSelect1: 
in bit_vector (9 downto 1); 

 CLK, ODVin, URB0, URB1, PSVin, OPER0, OPER1, PRB0, PRB1, UNP0, 
UNP1:in bit; 

 OtherBinDataSIN, OtherBinDataCOS: in bit_vector (17 downto 1); 

 Q, I: out bit_vector (17 downto 1); Q1, I1: inout bit_vector (17 
downto 1);ODVout0, ODVout1, PSVout0, PSVout1:inout bit; CLR13out0, 
CLR13out1, CLR17out0, CLR17out1: out bit; 

 DRFM0, DRFM1:inout bit_vector (5 downto 1)); 

end TwoBins; 

architecture TwoBins of TwoBins is 

component FakeRadarChip is      

 port (PhaseSamp, PhaseInc: in bit_vector (5 downto 1); Gain: in 
bit_vector (4 downto 1); 

 BinSelect: in bit_vector (9 downto 1); CLK, ODVin, URB, PSVin, 
OPER, PRB, UNP: in bit; 

 OtherBinDataSIN, OtherBinDataCOS: in bit_vector (17 downto 1); 

 Q, I: out bit_vector (17 downto 1); ODVout, PSVout, CLR13out, 
CLR17out: out bit; DRFM: out bit_vector (5 downto 1)); 

end component; 

begin  -- BIN0 is the primary output 

BIN0: FakeRadarChip port map (DRFM1, PhaseInc0, Gain0, BinSelect0, CLK, 
ODVout1, URB0, PSVout1, OPER0, 

  PRB0, UNP0, Q1, I1, Q, I, ODVout0, PSVout0, CLR13out0, 
CLR17out0, DRFM0); 

BIN1: FakeRadarChip port map (PhaseSamp, PhaseInc1, Gain1, BinSelect1, 
CLK, ODVin, URB1, PSVin, OPER1, 

  PRB1, UNP1, OtherBinDataSIN, OtherBinDataCOS, Q1, I1, OD-
Vout1, PSVout1, CLR13out1, CLR17out1, DRFM1);  

end TwoBins; 

 
O. FOUR RANGE BINS 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

entity FourBins is 

 port (PhaseSamp, PhaseInc0, PhaseInc1,PhaseInc2,PhaseInc3: in 
bit_vector (5 downto 1); 

 Gain0, Gain1, Gain2, Gain3: in bit_vector (4 downto 1); 

 CLK, ODVin, PSVin:in bit; OtherBinDataSIN, OtherBinDataCOS: in 
bit_vector (17 downto 1); 

 Q, I: out bit_vector (17 downto 1); ODVout,PSVout:out bit; 

 DRFMout:out bit_vector (5 downto 1)); 
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end FourBins; 

architecture FourBins of FourBins is 

component FakeRadarChip is      

 port (PhaseSamp, PhaseInc: in bit_vector (5 downto 1); Gain: in 
bit_vector (4 downto 1); 

 BinSelect: in bit_vector (9 downto 1); CLK, ODVin, URB, PSVin, 
OPER, PRB, UNP: in bit; 

 OtherBinDataSIN, OtherBinDataCOS: in bit_vector (17 downto 1); 

 Q, I: out bit_vector (17 downto 1); ODVout, PSVout: out bit; 
DRFM: out bit_vector (5 downto 1)); 

end component; 

signal Q1,I1,Q2,I2,Q3,I3: bit_vector (17 downto 1); 

signal DRFM0, DRFM1,DRFM2,DRFM3: bit_vector (5 downto 1); 

signal ODVout0, ODVout1, ODVout2, ODVout3, 
PSVout0,PSVout1,PSVout2,PSVout3:bit; 

begin -- BIN0 is the primary output 

BIN0: FakeRadarChip port map (DRFM1, PhaseInc0, Gain0, "000000000", 
CLK, ODVout1, '1', PSVout1, '1', 

  '1', '1', Q1, I1, Q, I, ODVout0, PSVout0, DRFM0); 

BIN1: FakeRadarChip port map (DRFM2, PhaseInc1, Gain1, "000000000", 
CLK, ODVout2, '1', PSVout2, '1', 

  '1', '1', Q2, I2, Q1, I1, ODVout1, PSVout1, DRFM1); 

BIN2: FakeRadarChip port map (DRFM3, PhaseInc2, Gain2, "000000000", 
CLK, ODVout3, '1', PSVout3, '1', 

  '1', '1', Q3, I3, Q2, I2, ODVout2, PSVout2, DRFM2); 

BIN3: FakeRadarChip port map (PhaseSamp, PhaseInc3, Gain3, "000000000", 
CLK, ODVin, '1', PSVin, '1', 

  '1', '1', OtherBinDataSIN, OtherBinDataCOS, Q3, I3, OD-
Vout3, PSVout3, DRFM3); 

ODVout<=ODVout0; 

PSVout<=ODVout0; 

DRFMout<=DRFM0; 

end FourBins; 
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APPENDIX C 

This appendix contains the final version of the VHDL 

code that was implemented on the SRC-6E and the support 

files required to compile and execute it. 

A. MACRO VHDL FILE 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

 

entity DFlipFlop is 

 port (CLK, LD, RESET, D: in bit; 

 Q: inout bit; Qnot: out bit := '1'); 

end DFLipFlop;        

 

architecture Equations of DFlipFlop is 

begin 

 process (CLK, LD, RESET) 

 begin 

  if CLK='1' and CLK'EVENT  then 

   if  RESET='1' then 

    Q <= '0'; 

   elsif LD='1' then 

    Q <= D; 

   end if; 

  end if; 

 end process; 

 Qnot <= not Q; 

end Equations; 

 

entity Register5 is 

 port (CLK,LD,RESET: in bit; D5: in bit_vector (4 downto 0); 

       Q5: inout bit_vector (4 downto 0); Q5not: out bit_vector (4 
downto 0)); 

end Register5;         

 

architecture Register5 of Register5 is  
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component DFlipFlop 

 port (CLK, LD, RESET, D: in bit; 

 Q: inout bit; Qnot: out bit); 

end component; 

begin 

 DFF0: DFlipFlop port map (CLK, LD, RESET, D5(0), Q5(0), 
Q5not(0));  

 DFF1: DFlipFlop port map (CLK, LD, RESET, D5(1), Q5(1), 
Q5not(1)); 

 DFF2: DFlipFlop port map (CLK, LD, RESET, D5(2), Q5(2), 
Q5not(2)); 

 DFF3: DFlipFlop port map (CLK, LD, RESET, D5(3), Q5(3), 
Q5not(3)); 

 DFF4: DFlipFlop port map (CLK, LD, RESET, D5(4), Q5(4), 
Q5not(4)); 

end Register5; 

 

entity Register8 is 

 port (CLK, LD, RESET: in bit; D8: in bit_vector (7 downto 0); 

 Q8: inout bit_vector (7 downto 0); Q8not: out bit_vector (7 
downto 0)); 

end Register8; 

 

architecture Register8 of Register8 is  

component DFlipFlop 

 port (CLK, LD, RESET, D: in bit; 

 Q: inout bit; Qnot: out bit); 

end component;         

 

begin 

 DFF0: DFlipFlop port map (CLK, LD, RESET, D8(0), Q8(0), 
Q8not(0));  

 DFF1: DFlipFlop port map (CLK, LD, RESET, D8(1), Q8(1), 
Q8not(1)); 

 DFF2: DFlipFlop port map (CLK, LD, RESET, D8(2), Q8(2), 
Q8not(2)); 

 DFF3: DFlipFlop port map (CLK, LD, RESET, D8(3), Q8(3), 
Q8not(3)); 

 DFF4: DFlipFlop port map (CLK, LD, RESET, D8(4), Q8(4), 
Q8not(4));  
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 DFF5: DFlipFlop port map (CLK, LD, RESET, D8(5), Q8(5), 
Q8not(5)); 

 DFF6: DFlipFlop port map (CLK, LD, RESET, D8(6), Q8(6), 
Q8not(6)); 

 DFF7: DFlipFlop port map (CLK, LD, RESET, D8(7), Q8(7), 
Q8not(7)); 

end Register8; 

 

entity Register13 is 

 port (CLK, LD, RESET: in bit; D13: in bit_vector (12 downto 0); 

 Q13: inout bit_vector (12 downto 0); Q13not: out bit_vector (12 
downto 0)); 

end Register13; 

 

architecture Register13 of Register13 is  

component DFlipFlop 

 port (CLK, LD, RESET, D: in bit; 

 Q: inout bit; Qnot: out bit); 

end component;         

 

begin 

 DFF0: DFlipFlop port map (CLK, LD, RESET, D13(0), Q13(0), 
Q13not(0));  

 DFF1: DFlipFlop port map (CLK, LD, RESET, D13(1), Q13(1), 
Q13not(1)); 

 DFF2: DFlipFlop port map (CLK, LD, RESET, D13(2), Q13(2), 
Q13not(2)); 

 DFF3: DFlipFlop port map (CLK, LD, RESET, D13(3), Q13(3), 
Q13not(3)); 

 DFF4: DFlipFlop port map (CLK, LD, RESET, D13(4), Q13(4), 
Q13not(4));  

 DFF5: DFlipFlop port map (CLK, LD, RESET, D13(5), Q13(5), 
Q13not(5)); 

 DFF6: DFlipFlop port map (CLK, LD, RESET, D13(6), Q13(6), 
Q13not(6)); 

 DFF7: DFlipFlop port map (CLK, LD, RESET, D13(7), Q13(7), 
Q13not(7));   

 DFF8: DFlipFlop port map (CLK, LD, RESET, D13(8), Q13(8), 
Q13not(8)); 

 DFF9: DFlipFlop port map (CLK, LD, RESET, D13(9), Q13(9), 
Q13not(9)); 
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 DFF10: DFlipFlop port map (CLK, LD, RESET, D13(10), Q13(10), 
Q13not(10));  

 DFF11: DFlipFlop port map (CLK, LD, RESET, D13(11), Q13(11), 
Q13not(11));  

 DFF12: DFlipFlop port map (CLK, LD, RESET, D13(12), Q13(12), 
Q13not(12));  

end Register13; 

 

entity Register17 is 

 port (CLK, LD, RESET: in bit; D17: in bit_vector (16 downto 0); 

 Q17: inout bit_vector (16 downto 0); Q17not: out bit_vector (16 
downto 0)); 

end Register17; 

 

architecture Register17 of Register17 is  

component DFlipFlop 

 port (CLK, LD, RESET,D: in bit; 

 Q: inout bit; Qnot: out bit); 

end component;         

 

begin 

 DFF0: DFlipFlop port map (CLK, LD, RESET, D17(0), Q17(0), 
Q17not(0));  

 DFF1: DFlipFlop port map (CLK, LD, RESET, D17(1), Q17(1), 
Q17not(1)); 

 DFF2: DFlipFlop port map (CLK, LD, RESET, D17(2), Q17(2), 
Q17not(2)); 

 DFF3: DFlipFlop port map (CLK, LD, RESET, D17(3), Q17(3), 
Q17not(3)); 

 DFF4: DFlipFlop port map (CLK, LD, RESET, D17(4), Q17(4), 
Q17not(4));  

 DFF5: DFlipFlop port map (CLK, LD, RESET, D17(5), Q17(5), 
Q17not(5)); 

 DFF6: DFlipFlop port map (CLK, LD, RESET, D17(6), Q17(6), 
Q17not(6)); 

 DFF7: DFlipFlop port map (CLK, LD, RESET, D17(7), Q17(7), 
Q17not(7));   

 DFF8: DFlipFlop port map (CLK, LD, RESET, D17(8), Q17(8), 
Q17not(8)); 

 DFF9: DFlipFlop port map (CLK, LD, RESET, D17(9), Q17(9), 
Q17not(9)); 
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 DFF10: DFlipFlop port map (CLK, LD, RESET, D17(10), Q17(10), 
Q17not(10));  

 DFF11: DFlipFlop port map (CLK, LD, RESET, D17(11), Q17(11), 
Q17not(11));  

 DFF12: DFlipFlop port map (CLK, LD, RESET, D17(12), Q17(12), 
Q17not(12));  

 DFF13: DFlipFlop port map (CLK, LD, RESET, D17(13), Q17(13), 
Q17not(13));  

 DFF14: DFlipFlop port map (CLK, LD, RESET, D17(14), Q17(14), 
Q17not(14));  

 DFF15: DFlipFlop port map (CLK, LD, RESET, D17(15), Q17(15), 
Q17not(15));  

 DFF16: DFlipFlop port map (CLK, LD, RESET, D17(16), Q17(16), 
Q17not(16));  

end Register17; 

 

entity ROMLUT is  

port (SIN, COS:out bit_vector(8 downto 1); 

   FIVEBITS:in bit_vector(5 downto 1)); 

end ROMLUT; 

 

architecture ROMLUT of ROMLUT is 

 

signal ROMLUTValue : bit_vector(15 downto 0); 

 

begin 

  

with FIVEBITS Select 

   ROMLUTValue <="0000000001111111" when "00000", --0 

  "0001100101111101" when "00001", --1 

  "0011000101110101" when "00010", --2 

  "0100011101101010" when "00011", --3 

  "0101101001011010" when "00100", --4 

  "0110101001000111" when "00101", --5 

  "0111010100110001" when "00110", --6 

  "0111110100011001" when "00111", --7 

  "0111111100000000" when "01000", --8 

  "0111110111100111" when "01001", --9 

  "0111010111001111" when "01010", --A 

  "0110101010111001" when "01011", --b 
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  "0101101010100110" when "01100", --C 

  "0100011110010110" when "01101", --d 

  "0011000110001011" when "01110", --E 

  "0001100110000011" when "01111", --F 

  "0000000010000001" when "10000", --10 

  "1110011110000011" when "10001", --11 

  "1100111110001011" when "10010", --12 

  "1011100110010110" when "10011", --13 

  "1010011010100110" when "10100", --14 

  "1001011010111001" when "10101", --15 

  "1000101111001111" when "10110", --16 

  "1000001111100111" when "10111", --17 

  "1000000100000000" when "11000", --18 

  "1000001100011001" when "11001", --19 

  "1000101100110001" when "11010", --1A 

  "1001011001000111" when "11011", --1b 

  "1010011001011010" when "11100", --1C 

  "1011100101101010" when "11101", --1d 

  "1100111101110101" when "11110", --1E 

  "1110011101111101" when "11111", --1F 

  "0000000000000000" when others;  --Never Occurs 

         

   SIN <= ROMLUTValue(15 downto 8); 

   COS <= ROMLUTValue(7 downto 0); 

end ROMLUT;  

 

entity FullAdder is  

 port (X, Y, Cin: in bit; 

 Cout, Sum: out bit); 

end FullAdder; 

architecture Equations of FullAdder is  

begin 

 Sum <= X xor Y xor Cin; 
 

 Cout <= (X and Y) or (X and Cin) or (Y and Cin); 

end Equations; 

 

entity FullAdderOV is 
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 port (Ci, Cout, OVin: in bit; 

    Co, OVout: out bit); 

end FullAdderOV; 

 

architecture Equations of FullAdderOV is 

begin 

 Co <= Cout; 

 OVout <= OVin or (Ci xor Cout); 

end Equations; 

 

entity Adder5 is 

 port (A, B: in bit_vector(4 downto 0); Ci: in bit; 

    S: out bit_vector(4 downto 0); Co: out bit); 

end Adder5; 

 

architecture Adder5 of Adder5 is 

component FullAdder 

 port (X, Y, Cin: in bit; 

 Cout, Sum: out bit); 

end component; 

signal C: bit_vector(4 downto 1); 

begin 

 FA0: FullAdder port map (A(0), B(0), Ci, C(1), S(0)); 

 FA1: FullAdder port map (A(1), B(1), C(1), C(2), S(1)); 

 FA2: FullAdder port map (A(2), B(2), C(2), C(3), S(2)); 

 FA3: FullAdder port map (A(3), B(3), C(3), C(4), S(3)); 

 FA4: FullAdder port map (A(4), B(4), C(4), Co, S(4)); 

end Adder5; 

 

entity CLAH4 is 

 port (A, B: in bit_vector(3 downto 0); Cin: in bit; Cout: out 
bit); 

end CLAH4; 

 

architecture CLAH4 of CLAH4 is 

signal g0, g1, g2, g3, p0, p1, p2, p3: bit; 

begin 

 g0 <= A(0) and B(0); 
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 p0 <= A(0) or B(0); 

 g1 <= A(1) and B(1); 

 p1 <= A(1) or B(1); 

 g2 <= A(2) and B(2); 

 p2 <= A(2) or B(2); 

 g3 <= A(3) and B(3); 

 p3 <= A(3) or B(3); 

 Cout <= g3 or (p3 and g2) or (p3 and p2 and g1) or (p3 and p2 and 
p1 and g0) or (p3 and p2 and p1 and p0 and Cin); 

end CLAH4; 

 

entity CLAH8 is 

 port (A, B: in bit_vector(7 downto 0); Cin: in bit; Cout: out 
bit); 

end CLAH8; 

 

architecture CLAH8 of CLAH8 is 

signal g0, g1, g2, g3, g4, g5, g6, g7, p0, p1, p2, p3, p4, p5, p6, p7: 
bit; 

begin 

 g0 <= A(0) and B(0); 

 p0 <= A(0) or B(0); 

 g1 <= A(1) and B(1); 

 p1 <= A(1) or B(1); 

 g2 <= A(2) and B(2); 

 p2 <= A(2) or B(2); 

 g3 <= A(3) and B(3); 

 p3 <= A(3) or B(3); 

 g4 <= A(4) and B(4); 

 p4 <= A(4) or B(4); 

 g5 <= A(5) and B(5); 

 p5 <= A(5) or B(5); 

 g6 <= A(6) and B(6); 

 p6 <= A(6) or B(6); 

 g7 <= A(7) and B(7); 

 p7 <= A(7) or B(7);  

 Cout <= g7 or (p7 and g6) or (p7 and p6 and g5) or (p7 and p6 and 
p5 and g4) or (p7 and p6 and p5 and p4 and g3) or 
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 (p7 and p6 and p5 and p4 and p3 and g2) or (p7 and p6 and p5 and 
p4 and p3 and p2 and g1) or  

 (p7 and p6 and p5 and p4 and p3 and p2 and p1 and g0) or (p7 and 
p6 and p5 and p4 and p3 and p2 and p1 and p0 and Cin); 

end CLAH8; 

 

entity Adder16 is  

 port (A, B: in bit_vector(15 downto 0); Ci, OVin: in bit; 

    S: out bit_vector(16 downto 0); Co: out bit); 

end Adder16; --bit 16 of S is overflow 

 

architecture Adder16 of Adder16 is  

component CLAH4 

  port (A, B: in bit_vector(3 downto 0); Cin: in bit; Cout: out 
bit); 

end component; 

component CLAH8 

  port (A, B: in bit_vector(7 downto 0); Cin: in bit; Cout: out 
bit); 

end component; 

component FullAdder 

 port (X, Y, Cin: in bit; 

 Cout, Sum: out bit); 

end component; 

component FullAdderOV 

 port (Ci, Cout, OVin: in bit; 

    Co, OVout: out bit); 

end component; 

 

signal C: bit_vector(16 downto 1); 

signal dummy1, dummy2, dummy3: bit; 

begin  

 FA0: FullAdder port map (A(0), B(0), Ci, C(1), S(0)); 

 FA1: FullAdder port map (A(1), B(1), C(1), C(2), S(1)); 

 FA2: FullAdder port map (A(2), B(2), C(2), C(3), S(2)); 

 FA3: FullAdder port map (A(3), B(3), C(3), dummy1, S(3)); 

 CLAH0: CLAH4 port map (A(3 downto 0), B(3 downto 0), Ci, C(4)); 

 FA4: FullAdder port map (A(4), B(4), C(4), C(5), S(4)); 

 FA5: FullAdder port map (A(5), B(5), C(5), C(6), S(5)); 



76 

 FA6: FullAdder port map (A(6), B(6), C(6), C(7), S(6)); 

 FA7: FullAdder port map (A(7), B(7), C(7), dummy2, S(7)); 

 CLAH1: CLAH8 port map (A(7 downto 0), B(7 downto 0), Ci, C(8)); 

 FA8: FullAdder port map (A(8), B(8), C(8), C(9), S(8)); 

 FA9: FullAdder port map (A(9), B(9), C(9), C(10), S(9)); 

 FA10: FullAdder port map (A(10), B(10), C(10), C(11), S(10)); 

 FA11: FullAdder port map (A(11), B(11), C(11), dummy3, S(11)); 

 CLAH2: CLAH4 port map (A(11 downto 8), B(11 downto 8), C(8), 
C(12)); 

 FA12: FullAdder port map (A(12), B(12), C(12), C(13), S(12)); 

 FA13: FullAdder port map (A(13), B(13), C(13), C(14), S(13)); 

 FA14: FullAdder port map (A(14), B(14), C(14), C(15), S(14)); 

 FA15: FullAdder port map (A(15), B(15), C(15), C(16), S(15)); 

 FAOV: FullAdderOV port map (C(15), C(16), OVin, Co, S(16)); 

end Adder16; 

 

entity ControlLogic is 

 port (ODVin, URB, PSVin, CLK, OPER: in bit; 

    CLR13, CLR17: out bit := '1'; ODVout, PSVout: out bit); 

end ControlLogic; 

 

architecture ControlLogic of ControlLogic is 

component DFlipFlop 

 port (CLK, LD, RESET, D: in bit; 

 Q: inout bit; Qnot: out bit); 

end component;          

signal 
RESET,D1,Q1,Q1Not,D2,Q2,Q2Not,D3,Q3,Q3Not,D4,Q4,Q4Not,PSVD,PSVQ,PSVQNot
:bit; 

begin 

 RESET <= '0'; 

 PSVFF: DFlipFlop port map (CLK, OPER, RESET, PSVD, PSVQ, 
PSVQNot); 

 DFF1: DFLipFlop port map(CLK, OPER, RESET, D1, Q1, Q1Not);  

 DFF2: DFLipFlop port map(CLK, OPER, RESET, D2, Q2, Q2Not); 

 DFF3: DFLipFlop port map(CLK, OPER, RESET, D3, Q3, Q3Not); 

 DFF4: DFLipFlop port map(CLK, OPER, RESET, D4, Q4, Q4Not); 

 

 PSVD <= PSVin; 
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 D1 <= URB and PSVQ; 

 D2 <= Q1; 

 D3 <= ODVin or Q2; 

 D4 <= Q3; 

 CLR13 <= Q2Not; 

 CLR17 <= Q3Not; 

 PSVout <= PSVQ; 

 ODVout <= Q4; 

 

end ControlLogic; 

 

entity GainShifter is 

 port (Control:in bit_vector(4 downto 1); Data: in bit_vector(8 
downto 1); 

 Output: out bit_vector(13 downto 1)); 

end GainShifter; 

 

architecture GainShifter of GainShifter is 

 

begin 

 process (Control,Data) 

 

 begin  

  Output(13 downto 1) <= "0000000000000"; 

  case Control is 

  when "0000" => Output(3 downto 1) <= Data(8 downto 6); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 4) <= "1111111111"; 

   end if; 
 

  when "0001" => Output(4 downto 1) <= Data(8 downto 5); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 5) <= "111111111"; 

   end if; 

  when "0010" => Output(5 downto 1) <= Data(8 downto 4); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 6) <= "11111111"; 

   end if; 
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  when "0011" => Output(6 downto 1) <= Data(8 downto 3); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 7) <= "1111111"; 

   end if; 

  when "0100" => Output(6 downto 1) <= Data(8 downto 3); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 7) <= "1111111"; 

   end if; 

  when "0101" => Output(7 downto 1) <= Data(8 downto 2); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 8) <= "111111"; 

   end if; 

  when "0110" => Output(8 downto 1) <= Data(8 downto 1); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 9) <= "11111"; 

   end if; 

  when "0111" => Output(9 downto 2) <= Data(8 downto 1); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 10) <= "1111"; 

   end if; 

  when "1000" => Output(7 downto 1) <= Data(8 downto 2); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 8) <= "111111"; 

   end if; 

  when "1001" => Output(8 downto 1) <= Data(8 downto 1); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 9) <= "11111"; 

   end if; 

  when "1010" => Output(9 downto 2) <= Data(8 downto 1); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 10) <= "1111"; 

   end if; 

  when "1011" => Output(10 downto 3) <= Data(8 downto 1); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 11) <= "111"; 

   end if; 

  when "1100" => Output(10 downto 3) <= Data(8 downto 1); 



79 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 11) <= "111"; 

   end if; 

  when "1101" => Output(11 downto 4) <= Data(8 downto 1); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13 downto 12) <= "11"; 

   end if; 

  when "1110" => Output(12 downto 5) <= Data(8 downto 1); 

   if Data(8)='1' then --need to preserve the sign bit  

    Output(13) <= '1'; 

   end if; 

  when "1111" => Output(13 downto 6) <= Data(8 downto 1); 

  when others => -- summon blue screen of death 

  end case; 

 end process; 

end GainShifter; 

 

entity OneBin is      

 port (PhaseSamp, PhaseInc: in bit_vector (5 downto 1); 

  Gain: in bit_vector (4 downto 1); 

  ODVin, PSVin: in bit; 

  OtherBinDataSIN, OtherBinDataCOS: in bit_vector (17 downto 
1); 

  Q, I: out bit_vector (17 downto 1); 

  ODVout, PSVout: out bit; 

  DRFM: out bit_vector (5 downto 1); 

  CLK: in bit); 

end OneBin; 

 

architecture OneBin of OneBin is 

component Register5 is 

 port (CLK, LD, RESET: in bit; D5: in bit_vector (4 downto 0); 

       Q5: inout bit_vector (4 downto 0); Q5not: out bit_vector (4 
downto 0)); 

end component; 

component Register8 is 

 port (CLK, LD, RESET: in bit; D8: in bit_vector (7 downto 0); 
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 Q8: inout bit_vector (7 downto 0); Q8not: out bit_vector (7 
downto 0)); 

end component; 

component Register13 is 

 port (CLK, LD, RESET: in bit; D13: in bit_vector (12 downto 0); 

 Q13: inout bit_vector (12 downto 0); Q13not: out bit_vector (12 
downto 0)); 

end component; 

component Register17 is 

 port (CLK, LD, RESET: in bit; D17: in bit_vector (16 downto 0); 

 Q17: inout bit_vector (16 downto 0); Q17not: out bit_vector (16 
downto 0)); 

end component;   

component Adder5 is 

 port (A, B: in bit_vector(4 downto 0); Ci: in bit; 

    S: out bit_vector(4 downto 0); Co: out bit); 

end component; 

component Adder16 is 

 port (A, B: in bit_vector(15 downto 0); Ci, OVin: in bit; 

    S: out bit_vector(16 downto 0); Co: out bit); 

end component; 

component ROMLUT is  

port (SIN, COS:out bit_vector(1 to 8); 

   FIVEBITS:in bit_vector(1 to 5)); 

end component; 

component GainShifter is 

 port (Control:in bit_vector(4 downto 1); Data: in bit_vector(8 
downto 1); 

 Output: out bit_vector(13 downto 1)); 

end component; 

component ControlLogic is 

 port (ODVin, URB, PSVin, CLK, OPER: in bit; 

   CLR13, CLR17, ODVout, PSVout: out bit); 

end component; 

 

signal 
QOutReg1,QNotOutReg1,QOutReg2,QNotOutReg2,QOutReg3,QNotOutReg3,QOutReg4
,QNotOutReg4, 

 QOutReg5,QNotOutReg5,QOutReg6,QNotOutReg6,OutAdd1: bit_vector (5 
downto 1);  
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signal QOutReg7,QNotOutReg7,QOutReg8,QNotOutReg8, LUTSIN, LUTCOS: 
bit_vector (8 downto 1); 

signal QOutReg9,QNotOutReg9,QOutReg10,QNotOutReg10, OutShiftSIN, Out-
ShiftCOS: bit_vector (13 downto 1); 

signal 
QOutReg11,QNotOutReg11,QOutReg12,QNotOutReg12,QOutReg13,QNotOutReg13,QO
utReg14,QNotOutReg14, 

OutAdd2, OutAdd3: bit_vector (17 downto 1); 

signal InputAdder2, InputAdder3: bit_vector (16 downto 1); 

signal OPER, URB, LD, CLR5, CLR8, CLR13, CLR17, Ci, Co1, Co2, Co3, Re-
set_Inact: bit; 

signal InReg5: bit_vector (5 downto 1); 

begin  

 OPER <='1'; 

 URB <= '1';     

 CLR5 <= '0'; 

 CLR8 <= '0'; 

 Ci <= '0'; 

 LD <= '1'; 

 Reset_Inact <= '0'; 

 InReg5(4 downto 1) <= Gain (4 downto 1); 

 InReg5(5) <= URB; 

 Reg1: Register5 port map(CLK, LD, CLR5, PhaseInc(5 downto 1), 
QOutReg1(5 downto 1), QNotOutReg1(5 downto 1)); 

 Reg2: Register5 port map(CLK, LD, CLR5, QOutReg1(5 downto 1), 
QOutReg2(5 downto 1), QNotOutReg2(5 downto 1));  

 Reg3: Register5 port map(CLK, LD, CLR5, PhaseSamp(5 downto 1), 
QOutReg3(5 downto 1), QNotOutReg3(5 downto 1)); 

 Add1: Adder5 port map (QOutReg2,QOutReg3, Ci, OutAdd1(5 downto 
1), Co1); 

 Reg4: Register5 port map(CLK, LD, CLR5, OutAdd1(5 downto 1), 
QOutReg4(5 downto 1), QNotOutReg4(5 downto 1)); 

 LUT: ROMLUT port map (LUTSIN(8 downto 1),LUTCOS(8 downto 
1),QOutReg4(5 downto 1)); 

 Reg5: Register5 port map(CLK, LD, CLR5, InReg5(5 downto 1), 
QOutReg5(5 downto 1), QNotOutReg5(5 downto 1)); 

 Reg6: Register5 port map(CLK, LD, CLR5, QOutReg5(5 downto 1), 
QOutReg6(5 downto 1), QNotOutReg6(5 downto 1)); 

 Reg7: Register8 port map(CLK, LD, CLR8, LUTSIN(8 downto 1), 
QOutReg7(8 downto 1), QNotOutReg7(8 downto 1)); 

 Reg8: Register8 port map(CLK, LD, CLR8, LUTCOS(8 downto 1), 
QOutReg8(8 downto 1), QNotOutReg8(8 downto 1)); 
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 Shift1: GainShifter port map (QOutReg6(4 downto 1),QOutReg7(8 
downto 1),OutShiftSIN(13 downto 1)); 

 Shift2: GainShifter port map (QOutReg6(4 downto 1),QOutReg8(8 
downto 1),OutShiftCOS(13 downto 1)); 

 Reg9: Register13 port map(CLK, LD, CLR13, OutShiftSIN(13 downto 
1), QOutReg9(13 downto 1), QNotOutReg9(13 downto 1)); 

 Reg10: Register13 port map(CLK, LD, CLR13, OutShiftCOS(13 downto 
1), QOutReg10(13 downto 1), QNotOutReg10(13 downto 1));  

 Reg11: Register17 port map(CLK, LD, Reset_Inact, OtherBinData-
SIN(17 downto 1), QOutReg11(17 downto 1), QNotOutReg11(17 downto 1));  

 Reg12: Register17 port map(CLK, LD, Reset_Inact, OtherBinData-
COS(17 downto 1), QOutReg12(17 downto 1), QNotOutReg12(17 downto 1));  

 Add2: Adder16 port map (InputAdder2, QOutReg11(16 downto 1), Ci, 
QOutReg11(17), OutAdd2(17 downto 1),Co2); 

 Add3: Adder16 port map (InputAdder3, QOutReg12(16 downto 1), Ci, 
QOutReg12(17), OutAdd3(17 downto 1),Co3); 

 Reg13: Register17 port map(CLK, LD, CLR17, OutAdd2(17 downto 1), 
QOutReg13(17 downto 1), QNotOutReg13(17 downto 1)); 

 Reg14: Register17 port map(CLK, LD, CLR17, OutAdd3(17 downto 1), 
QOutReg14(17 downto 1), QNotOutReg14(17 downto 1)); 

 Control: ControlLogic port map (ODVin, URB, PSVin, CLK, OPER, 
CLR13, CLR17, ODVout, PSVout); 

  

 InputAdder2(13 downto 1) <= QOutReg9(13 downto 1); 

 InputAdder2(14) <= QOutReg9(13); 

 InputAdder2(15) <= QOutReg9(13); 

 InputAdder2(16) <= QOutReg9(13); 

 InputAdder3(13 downto 1) <= QOutReg10(13 downto 1); 

 InputAdder3(14) <= QOutReg10(13); 

 InputAdder3(15) <= QOutReg10(13); 

 InputAdder3(16) <= QOutReg10(13); 

 DRFM(5 downto 1) <= QOutReg3(5 downto 1); 

 Q <= QOutReg13; 

 I <= QOutReg14; 

 

end OneBin; 

 

entity FourBin is 

 port (Data, Signals: in bit_vector (63 downto 0); 

 Output:out bit_vector (63 downto 0); CLK: in bit); 

end FourBin; 
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architecture FourBin of FourBin is 

 

component OneBin is 

 

 port (PhaseSamp, PhaseInc: in bit_vector (5 downto 1); 

  Gain: in bit_vector (4 downto 1); 

  ODVin, PSVin: in bit; 

  OtherBinDataSIN, OtherBinDataCOS: in bit_vector (17 downto 
1); 

  Q, I: out bit_vector (17 downto 1); 

  ODVout, PSVout: out bit; 

  DRFM: out bit_vector (5 downto 1); 

  CLK: in bit); 

end component; 

 

signal Q, I, Q1,I1,Q2,I2,Q3,I3, OtherBinDataSIN, OtherBinDataCOS: 
bit_vector (17 downto 1); 

signal DRFM0, DRFM1,DRFM2,DRFM3: bit_vector (5 downto 1); 

signal PSVin, ODVin, ODVout0, ODVout1, ODVout2, ODVout3, PSVout0, 
PSVout1, PSVout2, PSVout3: bit; 

signal Gain0, Gain1, Gain2, Gain3: bit_vector (4 downto 1); 

signal PhaseInc0, PhaseInc1, PhaseInc2, PhaseInc3, PhaseSamp: 
bit_vector (5 downto 1); 

signal URB: bit_vector (2 downto 1); 

begin -- BIN0 is the primary output 

 

--Data: Bit 63-41 not used, 

--40-37 ampscal[0], 36-33 ampscal[1], 32-29 ampscal[2], 28-25 amp-
scal[3], 

--24-20 phzincdat[0], 19-15 phzincdat[1],14-10 phzincdat[2], 9-5 
phzincdat[3], 4-0 phasesample 

 

--Signals:Bits 63-38  not used, 

--37 PSVin, 36 ODVin, 35-34 URB, 

--33-17 OtherBinDataSIN,16-0 OtherBinDataCOS 

 

Gain0 <= Data(40 downto 37); 

Gain1 <= Data(36 downto 33); 
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Gain2 <= Data(32 downto 29); 

Gain3 <= Data(28 downto 25); 

PhaseInc0 <= Data(24 downto 20); 

PhaseInc1 <= Data(19 downto 15); 

PhaseInc2 <= Data(14 downto 10); 

PhaseInc3 <= Data(9 downto 5); 

PhaseSamp <= Data(4 downto 0); 

PSVin <= Signals(37); 

ODVin <= Signals(36); 

URB <= Signals(35 downto 34); 

OtherBinDataSIN <= Signals(33 downto 17); 

OtherBinDataCOS <= Signals(16 downto 0); 

 

BIN0: OneBin port map (DRFM1, PhaseInc0, Gain0, ODVout1, PSVout1, 
Q1, I1, Q, I, ODVout0, PSVout0, DRFM0, CLK); 

BIN1: OneBin port map (DRFM2, PhaseInc1, Gain1, ODVout2, PSVout2, Q2, 
I2, Q1, I1, ODVout1, PSVout1, DRFM1, CLK); 

BIN2: OneBin port map (DRFM3, PhaseInc2, Gain2, ODVout3, PSVout3, Q3, 
I3, Q2, I2, ODVout2, PSVout2, DRFM2, CLK); 

BIN3: OneBin port map (PhaseSamp, PhaseInc3, Gain3, ODVin, PSVin, 
OtherBinDataSIN, OtherBinDataCOS, Q3, I3, ODVout3, PSVout3, DRFM3, 
CLK); 

Output(40)<=PSVout0; 

Output(39)<=ODVout0; 

Output(38 downto 22)<=Q; 

Output(21 downto 5)<=I; 

Output(4 downto 0)<=DRFM0; 

Output(63 downto 41)<="00000000000000000000000"; 

 

end FourBin; 

 

B. MAKEFILE 

# ---------------------------------- 

# User defines FILES, MAPFILES, and BIN here 

# ---------------------------------- 

FILES  = main.c 

MAPFILES  = FourBinS.mc 

BIN   = FourBinTest 

# ----------------------------------- 
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# User defined macros info supplied here 

# 

# (Leave commented out if not used) 

# ----------------------------------- 

MACROS = my_macro/fourbin.vhd 

MY_BLKBOX  = my_macro/fourbin.box 

MY_NGO_DIR  = my_macro 

MY_INFO  = my_macro/fourbin.info 

# ----------------------------------- 

# User supplied MCC and MFTN flags 

# ----------------------------------- 

MY_MCCFLAGS  = 

MY_MFTNFLAGS = 

# ----------------------------------- 

# User supplied flags for C & Fortran compilers 

# ----------------------------------- 

CC  = icc # icc for Intel cc for Gnu 

FC  = ifc # ifc for Intel f77 for Gnu 

LD  = ifc # ifc for Intel cc  for Gnu 

MY_CFLAGS  =  

MY_FFLAGS =  

# ----------------------------------- 

# No modifications are required below 

# ----------------------------------- 

MAKIN   ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make 

include $(MAKIN) 

 

C. MACRO INFO FILE 

BEGIN_DEF "Four_Bin" 

 MACRO = "FourBin"; 

 STATEFUL = NO; 

 EXTERNAL = NO; 

 PIPELINED = YES; 

 LATENCY = 9; 

  

 INPUTS = 2: 

 I0 = INT 64 BITS (Data[63:0]) 
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 I1 = INT 64 BITS (Signals[63:0]) 

 ; 

 

 OUTPUTS = 1: 

 O0 = INT 64 BITS (Output[63:0]) 

 ; 

 

 IN_SIGNAL : 1 BITS "CLK"="CLOCK"; 

 

END_DEF 

 

D. MACRO BLACKBOX FILE 

module FourBin (Data, Signals, Output, CLK) /* synthesis syn_black_box 
*/ ; 

 input [63:0] Data; 

 input [63:0] Signals; 

 output [63:0] Output; 

 input CLK; 

endmodule 

 

E. C DRIVER PROGRAM 

/* main.c */ 

 

#include <stdio.h> 

#include <sys/types.h> 

#include <libmap.h> 

 

#define SAMPLE_MAX 500000     /* Maximum number of phase samples. */ 

#define PADDING 5 /* number of padding sets before and after the sam-
ples */ 

void FourBinS(); 

void *Cache_Aligned_Allocate(); 

void Cache_Aligned_Free(); 

 

int main () { 

 

 int i, nmap, mapnum, numofsamps, nbytes; 
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 short phzsampdat[SAMPLE_MAX]; 

 FILE *fileptr; 

 long I0, Q0, OtherBinDataSIN, OtherBinDataCOS; 

 char phzincdat[4], ampscaldat[4]; 

 char PSVin, ODVin, ODVout0, PSVout0, DRFM0, binnumber, URB; 

 long long temp, binprogram; 

 long long* dataa; 

 long long* datab; 

 long long* datac; 

 

/* Timing variables. */ 

    double tstart, tend, tcume, ttotal; 

    extern double second(); 

 

/* initialization */ 

     tstart = second(); 

 mapnum = 0; 

 nmap = 1; 

 OtherBinDataSIN=0; 

 OtherBinDataCOS=0; 

 ODVin=0; 

 numofsamps=0; 

 

/* Read in phase increment values. */ 

 if ((fileptr = fopen("datafiles/phzinc.txt", "r")) == NULL) 

   fprintf(stderr, "\n\nTERMINAL FAULT:  File phzinc.txt not 
found.\n\n"); 

 binnumber = 0; 

 while (fscanf(fileptr, "%x", &phzincdat[binnumber]) != EOF) 

  { 

  binnumber++; 

 } 

 fclose(fileptr); 

 

/* Read in amplitude scaling values */ 

 if ((fileptr = fopen("datafiles/ampscal.txt", "r")) == NULL) 

   fprintf(stderr, "\n\nTERMINAL FAULT:  File ampscal.txt not 
found.\n\n"); 
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 binnumber = 0; 

 while (fscanf(fileptr, "%x", &ampscaldat[binnumber]) != EOF) 

  { 

  binnumber++; 

 } 

 fclose(fileptr); 

 

/* Read in pulse phase samples */ 

 if ((fileptr = fopen("datafiles/phzsamp.txt", "r")) == NULL) 

   fprintf(stderr, "\n\nTERMINAL FAULT:  File phzsamp.txt not 
found.\n\n"); 

 numofsamps = 0; 

 while (fscanf(fileptr, "%x", &phzsampdat[numofsamps]) != EOF) 

  { 

  numofsamps++; 

 } 

 fclose(fileptr); 

  

    tend = second(); 

    tcume = tend - tstart; 

    ttotal = tcume; 

    printf ("\n Number of input samples: %d", numofsamps); 

    printf ("\n Time for disk access of input data:  %19.10f", tcume); 

 

 tstart = second(); 

 nbytes = (((numofsamps+PADDING*2+3)/4)*4)*8; 

 dataa=Cache_Aligned_Allocate(nbytes); 

 datab=Cache_Aligned_Allocate(nbytes); 

 datac=Cache_Aligned_Allocate(nbytes); 

 

    tend = second(); 

    tcume = tend - tstart; 

    ttotal = ttotal + tcume; 

    printf ("\n Time to allocate the data caches for the MAP:  
%19.10f", tcume); 

 

    tstart = second(); 

/* pack the data as follows: 
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Data: Bit 63-41 not used, 

 40-37 ampscal[0], 36-33 ampscal[1], 32-29 ampscal[2], 28-25 amp-
scal[3], 

 24-20 phzincdat[0], 19-15 phzincdat[1],14-10 phzincdat[2], 9-5 
phzincdat[3], 4-0 phzsampdat 

 

Signals:Bits 63-38  not used, 

 37 PSVin, 36 ODVin, 35-34 URB, 

 33-17 OtherBinDataSIN,16-0 OtherBinDataCOS 

 pad the data with sets of zero inputs before and after the real 
data */ 

  temp=0; 

  temp=((long long) ampscaldat[0] & 0xFLL); 

  temp=temp<<4 | ((long long) ampscaldat[1] & 0xFLL); 

  temp=temp<<4 | ((long long) ampscaldat[2] & 0xFLL); 

  temp=temp<<4 | ((long long) ampscaldat[3] & 0xFLL); 

  temp=temp<<5 | ((long long) phzincdat[0] & 0x1FLL); 

  temp=temp<<5 | ((long long) phzincdat[1] & 0x1FLL); 

  temp=temp<<5 | ((long long) phzincdat[2] & 0x1FLL); 

  binprogram=temp<<5 | ((long long) phzincdat[3] & 0x1FLL); 

  

 for (i=0; i<PADDING; i++){ 

  dataa[i]=binprogram <<5; 

  dataa[i+numofsamps+PADDING]=binprogram <<5; 

  datab[i]=0; 

  datab[i+numofsamps+PADDING]=0; 

  } 

 PSVin=1; 

 URB=3;/*use all 4 rangebins (macro currently ignores this)*/ 

 for (i = 0; i < numofsamps; i++) { 

  dataa[i+PADDING]=binprogram<<5 | ((long long) phzsampdat[i] 
& 0x1FLL); 

  temp=0; 

  temp=((long long) PSVin & 0x1LL); 

  temp=temp<<1 | ((long long) ODVin & 0x1LL); 

  temp=temp<<2 | ((long long) URB & 0x3LL); 

  temp=temp<<17 | ((long long) OtherBinDataSIN & 0x1FFFFLL); 

  datab[i+PADDING]=temp<<17 | ((long long) OtherBinDataCOS & 
0x1FFFFLL); 
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         } 

    tend = second(); 

    tcume = tend - tstart; 

    ttotal = ttotal + tcume; 

    printf ("\n Time to pack the data for transfer to MAP:  %19.10f", 
tcume); 

 

    tstart = second(); 

/* allocate map to this problem */ 

 if (map_allocate (nmap)) { 

   fprintf (stdout, "Map allocation failed.\n"); 

    exit (1); 

     } 

    tend = second(); 

    tcume = tend - tstart; 

    ttotal = ttotal + tcume; 

    printf ("\n Time for MAP allocation:  %19.10f", tcume); 

 

    tstart = second(); 

/* call compute */ 

 FourBinS (numofsamps+PADDING*2, dataa, datab, datac, mapnum); 

    tend = second(); 

    tcume = tend - tstart; 

    ttotal = ttotal + tcume; 

    printf ("\n Time for MAP call:  %19.10f", tcume); 

 

    tstart = second(); 

/* Open output file for writing. */ 

 if ((fileptr = fopen("datafiles/IandQout.txt", "w")) == NULL) 

        fprintf(stderr, "\n\nTERMINAL FAULT:  File 
IandQout.txt cannot be written.\n\n"); 

 

/* put headers in output file */ 

 fprintf(fileptr, "Iout  Qout  ODVout PSVout DRFM\n"); 

 fprintf(fileptr, "----- ----- ------ ------ -----\n"); 

 

/* unpack the results and send to output*/ 

 for (i = 0; i < numofsamps+PADDING*2; i++) { 
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  DRFM0=datac[i] & 0x1FLL; 

  I0=datac[i]>>5 & 0x1FFFFLL; 

  Q0=datac[i]>>22 & 0x1FFFFLL; 

  ODVout0=datac[i]>>39 & 0x1LL; 

  PSVout0=datac[i]>>40 & 0x1LL; 

  fprintf(fileptr, "%05X %05X   %01X      %01X    %02X\n", 
I0, Q0, ODVout0, PSVout0, DRFM0); 

    } 

   fclose (fileptr); 

 

   tend = second(); 

   tcume = tend - tstart; 

   ttotal = ttotal + tcume; 

   printf ("\n Time to unpack results and send to output file:  
%19.10f", tcume); 

   tstart = second(); 

/* free the map */ 

 if (map_free (nmap)) { 

         printf ("Map deallocation failed. \n"); 

        exit (1); 

        } 

    tend = second(); 

    tcume = tend - tstart; 

    ttotal = ttotal + tcume; 

    printf ("\n Time to free the MAP:  %19.10f", tcume); 

 

 tstart = second(); 

 

 Cache_Aligned_Free((char *)dataa); 

 Cache_Aligned_Free((char *)datab); 

 Cache_Aligned_Free((char *)datac); 

 

    tend = second(); 

    tcume = tend - tstart; 

    ttotal = ttotal + tcume; 

    printf ("\n Time to free the data arrays:  %19.10f", tcume); 

    printf ("\n Total Time: %19.10f\n\n", ttotal); 

} 
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F. MAP CODE FILE 

/* FourBinS.mc */ 

#include <libmap.h> 

#define IBANK MAX_OBM_SIZE 

void FourBinS ( int n, long long a[], long long b[], long long c[], int 
mapno) 

 { 

 struct { 

  long long al[IBANK]; 

 } banka; 

 struct { 

  long long bl[IBANK]; 

        } bankb;  

 struct { 

  long long cl[IBANK]; 

        } bankc; 

 

 long long *al     = banka.al; 

 long long *bl     = bankb.bl; 

 long long *cl     = bankc.cl; 

 

 int i, nbytes; 

 /* nbytes = n*8;*/ 

 nbytes = (((n+3)/4)*4)*8; 

 

 cm2obm_a(al, a, nbytes); 

 wait_server_a(); 

 cm2obm_b (bl, b, nbytes); 

 wait_server_b(); 

 

 for (i = 0; i < n; i++) { 

  Four_Bin(al[i], bl[i], &cl[i]); 

        } 

 

 obm2cm_c (c, cl, nbytes); 

 wait_server_c(); 

    } 



93 

 
G. SAMPLE PHASE SAMPLE INPUT FILE 

00 

01 

02 

03 

04 

05 

06 

07 

08 

09 

0A 

0B 

0C 

0D 

0E 

0F 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

1A 

1B 

1C 

1D 

1E 

1F 
 
H. SAMPLE RANGE BIN GAIN INPUT FILE 

2 

1 
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2 

1 
 

I. SAMPLE SCREEN OUTPUT 

Number of input samples: 32 

 Time for disk access of input data:         0.0002677690 

 Time to allocate the data caches for the MAP:         0.0000318932 

 Time to pack the data for transfer to MAP:         0.0000015922 

 Time for MAP allocation:         0.5351942658 

 Time for MAP call:         0.0960569127 

 Time to unpack results and send to output file:         0.0005680144 

 Time to free the MAP:         1.0062198973 

 Time to free the data arrays:         0.0000037104 

 Total Time:        1.6383440550 

 
J. SAMPLE OUTPUT DATA FILE 

Iout  Qout  ODVout PSVout DRFM 

----- ----- ------ ------ ----- 

00000 00000   0      1    00 

00000 00000   0      1    01 

00000 00000   0      1    02 

00000 00000   0      1    03 

0000F 0FFFC   1      1    04 

00007 0FFFE   1      1    05 

00016 0FFFB   1      1    06 

0000E 0FFFF   1      1    07 

0000E 00001   1      1    08 

0000D 00005   1      1    09 

0000B 00007   1      1    0A 

0000A 0000A   1      1    0B 

00007 0000C   1      1    0C 

00005 0000D   1      1    0D 

00002 0000E   1      1    0E 

0FFFE 0000E   1      1    0F 

0FFFB 0000E   1      1    10 

0FFF7 0000D   1      1    11 

0FFF5 0000B   1      1    12 

0FFF2 0000A   1      1    13 
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0FFF0 00007   1      1    14 

0FFEF 00005   1      1    15 

0FFEE 00002   1      1    16 

0FFEE 0FFFE   1      1    17 

0FFEE 0FFFB   1      1    18 

0FFEF 0FFF7   1      1    19 

0FFF1 0FFF5   1      1    1A 

0FFF2 0FFF2   1      1    1B 

0FFF6 0FFF0   1      1    1C 

0FFF8 0FFEF   1      1    1D 

0FFFB 0FFEE   1      1    1E 

0FFFF 0FFEE   1      1    1F 

00001 0FFEE   1      0    00 

00005 0FFEF   1      0    00 

00007 0FFF1   1      0    00 

0000A 0FFF2   1      0    00 

0FFFD 0FFFA   1      0    00 

00006 0FFFA   1      0    00 

0FFF8 00000   1      0    00 

00000 00000   0      0    00 

00000 00000   0      0    00 

00000 00000   0      0    00 

 
K. SAMPLE RANGE BIN PHASE ROTATION INPUT FILE 

1F 

11 

1F 

11 
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APPENDIX D 

This appendix contains the raw data collected from the 

three data sources.  The data was edited for format and 

presentation only by merging multiple data files and screen 

outputs into single text files. 

A. SRC-6E MACRO DATA 

 Number of input samples: 32 

 Time for disk access of input data:         0.0002677690 

 Time to allocate the data caches for the MAP:         0.0000318932 

 Time to pack the data for transfer to MAP:         0.0000015922 

 Time for MAP allocation:         0.5351942658 

 Time for MAP call:         0.0960569127 

 Time to unpack results and send to output file:         0.0005680144 

 Time to free the MAP:         1.0062198973 

 Time to free the data arrays:         0.0000037104 

 Total Time:        1.6383440550 

 

 Number of input samples: 32 

 Time for disk access of input data:         0.0002689050 

 Time to allocate the data caches for the MAP:         0.0000345652 

 Time to pack the data for transfer to MAP:         0.0000015071 

 Time for MAP allocation:         0.5559181052 

 Time for MAP call:         0.0958363668 

 Time to unpack results and send to output file:         0.0003943340 

 Time to free the MAP:         1.0063609813 

 Time to free the data arrays:         0.0000037825 

 Total Time:        1.6588185471 

 

 Number of input samples: 32 

 Time for disk access of input data:         0.0002782845 

 Time to allocate the data caches for the MAP:         0.0000353730 

 Time to pack the data for transfer to MAP:         0.0000015228 

 Time for MAP allocation:         0.5466191977 

 Time for MAP call:         0.0957191453 

 Time to unpack results and send to output file:         0.0003934382 
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 Time to free the MAP:         1.0064690704 

 Time to free the data arrays:         0.0000035836 

 Total Time:        1.6495196156 

 

 Number of input samples: 32 

 Time for disk access of input data:         0.0002708402 

 Time to allocate the data caches for the MAP:         0.0000354869 

 Time to pack the data for transfer to MAP:         0.0000013993 

 Time for MAP allocation:         0.5923142628 

 Time for MAP call:         0.0958587045 

 Time to unpack results and send to output file:         0.0003693907 

 Time to free the MAP:         1.0066480303 

 Time to free the data arrays:         0.0000032406 

 Total Time:        1.6955013552 

 

 Number of input samples: 32 

 Time for disk access of input data:         0.0002633170 

 Time to allocate the data caches for the MAP:         0.0000347017 

 Time to pack the data for transfer to MAP:         0.0000012340 

 Time for MAP allocation:         0.5432007360 

 Time for MAP call:         0.0957816167 

 Time to unpack results and send to output file:         0.0003904607 

 Time to free the MAP:         1.0066382354 

 Time to free the data arrays:         0.0000032465 

 Total Time:        1.6463135479 

 

 Number of input samples: 64 

 Time for disk access of input data:         0.0003175845 

 Time to allocate the data caches for the MAP:         0.0000341569 

 Time to pack the data for transfer to MAP:         0.0000017385 

 Time for MAP allocation:         0.5683862600 

 Time for MAP call:         0.0956988467 

 Time to unpack results and send to output file:         0.0004762942 

 Time to free the MAP:         1.0063969221 

 Time to free the data arrays:         0.0000034788 

 Total Time:        1.6713152818 
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 Number of input samples: 64 

 Time for disk access of input data:         0.0003063767 

 Time to allocate the data caches for the MAP:         0.0000392713 

 Time to pack the data for transfer to MAP:         0.0000017731 

 Time for MAP allocation:         0.5590026660 

 Time for MAP call:         0.0955597495 

 Time to unpack results and send to output file:         0.0004758422 

 Time to free the MAP:         1.0067611845 

 Time to free the data arrays:         0.0000035916 

 Total Time:        1.6621504548 

 

 Number of input samples: 64 

 Time for disk access of input data:         0.0002826070 

 Time to allocate the data caches for the MAP:         0.0000367635 

 Time to pack the data for transfer to MAP:         0.0000017988 

 Time for MAP allocation:         0.5498394886 

 Time for MAP call:         0.0957414989 

 Time to unpack results and send to output file:         0.0004572148 

 Time to free the MAP:         1.0064087044 

 Time to free the data arrays:         0.0000038783 

 Total Time:        1.6527719543 

 

 Number of input samples: 64 

 Time for disk access of input data:         0.0002825416 

 Time to allocate the data caches for the MAP:         0.0000316966 

 Time to pack the data for transfer to MAP:         0.0000017237 

 Time for MAP allocation:         0.5604036079 

 Time for MAP call:         0.0956780317 

 Time to unpack results and send to output file:         0.0004765750 

 Time to free the MAP:         1.0067241372 

 Time to free the data arrays:         0.0000034452 

 Total Time:        1.6636017589 

 

 Number of input samples: 64 

 Time for disk access of input data:         0.0002861433 

 Time to allocate the data caches for the MAP:         0.0000339728 

 Time to pack the data for transfer to MAP:         0.0000015644 
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 Time for MAP allocation:         0.5389705671 

 Time for MAP call:         0.0957993332 

 Time to unpack results and send to output file:         0.0004734413 

 Time to free the MAP:         1.0063321409 

 Time to free the data arrays:         0.0000034946 

 Total Time:        1.6419006575 

 

 Number of input samples: 128 

 Time for disk access of input data:         0.0003499791 

 Time to allocate the data caches for the MAP:         0.0000348569 

 Time to pack the data for transfer to MAP:         0.0000021587 

 Time for MAP allocation:         0.5492326826 

 Time for MAP call:         0.0956268387 

 Time to unpack results and send to output file:         0.0006270098 

 Time to free the MAP:         1.0063932453 

 Time to free the data arrays:         0.0000038566 

 Total Time:        1.6522706278 

 

 Number of input samples: 128 

 Time for disk access of input data:         0.0003540977 

 Time to allocate the data caches for the MAP:         0.0000365776 

 Time to pack the data for transfer to MAP:         0.0000021408 

 Time for MAP allocation:         0.5569221765 

 Time for MAP call:         0.0958692052 

 Time to unpack results and send to output file:         0.0006243340 

 Time to free the MAP:         1.0060996530 

 Time to free the data arrays:         0.0000032404 

 Total Time:        1.6599114252 

 

 Number of input samples: 128 

 Time for disk access of input data:         0.0003482387 

 Time to allocate the data caches for the MAP:         0.0000330829 

 Time to pack the data for transfer to MAP:         0.0000027293 

 Time for MAP allocation:         0.5580912070 

 Time for MAP call:         0.0958268696 

 Time to unpack results and send to output file:         0.0006249647 

 Time to free the MAP:         1.0061637045 
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 Time to free the data arrays:         0.0000035729 

 Total Time:        1.6610943696 

 

 Number of input samples: 128 

 Time for disk access of input data:         0.0003452869 

 Time to allocate the data caches for the MAP:         0.0000329286 

 Time to pack the data for transfer to MAP:         0.0000021903 

 Time for MAP allocation:         0.5476320571 

 Time for MAP call:         0.0957660111 

 Time to unpack results and send to output file:         0.0006117751 

 Time to free the MAP:         1.0065463808 

 Time to free the data arrays:         0.0000031959 

 Total Time:        1.6509398259 

 

 Number of input samples: 128 

 Time for disk access of input data:         0.0003497200 

 Time to allocate the data caches for the MAP:         0.0000313107 

 Time to pack the data for transfer to MAP:         0.0000022150 

 Time for MAP allocation:         0.6261321505 

 Time for MAP call:         0.0957161797 

 Time to unpack results and send to output file:         0.0006258458 

 Time to free the MAP:         1.0062361960 

 Time to free the data arrays:         0.0000034363 

 Total Time:        1.7290970540 

 

 Number of input samples: 256 

 Time for disk access of input data:         0.0004625537 

 Time to allocate the data caches for the MAP:         0.0000414161 

 Time to pack the data for transfer to MAP:         0.0000030873 

 Time for MAP allocation:         0.5701080822 

 Time for MAP call:         0.0957897472 

 Time to unpack results and send to output file:         0.0009789201 

 Time to free the MAP:         1.0057789229 

 Time to free the data arrays:         0.0000029706 

 Total Time:        1.6731657000 

 

 Number of input samples: 256 
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 Time for disk access of input data:         0.0004759619 

 Time to allocate the data caches for the MAP:         0.0000424247 

 Time to pack the data for transfer to MAP:         0.0000031962 

 Time for MAP allocation:         0.5605598434 

 Time for MAP call:         0.0958398278 

 Time to unpack results and send to output file:         0.0010340470 

 Time to free the MAP:         1.0060577265 

 Time to free the data arrays:         0.0000033858 

 Total Time:        1.6640164134 

 

 Number of input samples: 256 

 Time for disk access of input data:         0.0004909334 

 Time to allocate the data caches for the MAP:         0.0000418077 

 Time to pack the data for transfer to MAP:         0.0000032721 

 Time for MAP allocation:         0.5610595126 

 Time for MAP call:         0.0957838385 

 Time to unpack results and send to output file:         0.0010015783 

 Time to free the MAP:         1.0060574814 

 Time to free the data arrays:         0.0000032188 

 Total Time:        1.6644416428 

 

 Number of input samples: 256 

 Time for disk access of input data:         0.0004558661 

 Time to allocate the data caches for the MAP:         0.0000427304 

 Time to pack the data for transfer to MAP:         0.0000030734 

 Time for MAP allocation:         0.5659454288 

 Time for MAP call:         0.0957831108 

 Time to unpack results and send to output file:         0.0010010364 

 Time to free the MAP:         1.0060677676 

 Time to free the data arrays:         0.0000037963 

 Total Time:        1.6693028099 

 

 Number of input samples: 256 

 Time for disk access of input data:         0.0004885800 

 Time to allocate the data caches for the MAP:         0.0000416851 

 Time to pack the data for transfer to MAP:         0.0000031890 

 Time for MAP allocation:         0.5511499354 
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 Time for MAP call:         0.0961975577 

 Time to unpack results and send to output file:         0.0010007792 

 Time to free the MAP:         1.0055322002 

 Time to free the data arrays:         0.0000034818 

 Total Time:        1.6544174084 

 

 Number of input samples: 512 

 Time for disk access of input data:         0.0006995983 

 Time to allocate the data caches for the MAP:         0.0000495407 

 Time to pack the data for transfer to MAP:         0.0000059341 

 Time for MAP allocation:         0.5635743956 

 Time for MAP call:         0.0958592651 

 Time to unpack results and send to output file:         0.0017114796 

 Time to free the MAP:         1.0053390195 

 Time to free the data arrays:         0.0000028657 

 Total Time:        1.6672420986 

 

 Number of input samples: 512 

 Time for disk access of input data:         0.0007183850 

 Time to allocate the data caches for the MAP:         0.0000513633 

 Time to pack the data for transfer to MAP:         0.0000054903 

 Time for MAP allocation:         0.5580191022 

 Time for MAP call:         0.0958093556 

 Time to unpack results and send to output file:         0.0017153421 

 Time to free the MAP:         1.0050138898 

 Time to free the data arrays:         0.0000028241 

 Total Time:        1.6613357524 

 

 Number of input samples: 512 

 Time for disk access of input data:         0.0007295769 

 Time to allocate the data caches for the MAP:         0.0000498671 

 Time to pack the data for transfer to MAP:         0.0000053103 

 Time for MAP allocation:         0.5441085579 

 Time for MAP call:         0.0957256651 

 Time to unpack results and send to output file:         0.0017012210 

 Time to free the MAP:         1.0051159665 

 Time to free the data arrays:         0.0000031229 
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 Total Time:        1.6474392877 

 

 Number of input samples: 512 

 Time for disk access of input data:         0.0007316072 

 Time to allocate the data caches for the MAP:         0.0000485241 

 Time to pack the data for transfer to MAP:         0.0000066572 

 Time for MAP allocation:         0.5413774263 

 Time for MAP call:         0.0957333604 

 Time to unpack results and send to output file:         0.0017187052 

 Time to free the MAP:         1.0052396681 

 Time to free the data arrays:         0.0000030271 

 Total Time:        1.6448589756 

 

 Number of input samples: 512 

 Time for disk access of input data:         0.0007073195 

 Time to allocate the data caches for the MAP:         0.0000512257 

 Time to pack the data for transfer to MAP:         0.0000051294 

 Time for MAP allocation:         0.5688409651 

 Time for MAP call:         0.0961722968 

 Time to unpack results and send to output file:         0.0017124555 

 Time to free the MAP:         1.0049554719 

 Time to free the data arrays:         0.0000037834 

 Total Time:        1.6724486473 

 

 Number of input samples: 1024 

 Time for disk access of input data:         0.0011598321 

 Time to allocate the data caches for the MAP:         0.0000747768 

 Time to pack the data for transfer to MAP:         0.0000107293 

 Time for MAP allocation:         0.5627898064 

 Time for MAP call:         0.0958103127 

 Time to unpack results and send to output file:         0.0031125588 

 Time to free the MAP:         1.0039292726 

 Time to free the data arrays:         0.0000034244 

 Total Time:        1.6668907131 

 

 Number of input samples: 1024 

 Time for disk access of input data:         0.0011944289 
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 Time to allocate the data caches for the MAP:         0.0000739026 

 Time to pack the data for transfer to MAP:         0.0000107085 

 Time for MAP allocation:         0.5614359006 

 Time for MAP call:         0.0958402471 

 Time to unpack results and send to output file:         0.0031293658 

 Time to free the MAP:         1.0033827050 

 Time to free the data arrays:         0.0000034058 

 Total Time:        1.6650706644 

 

 Number of input samples: 1024 

 Time for disk access of input data:         0.0012244619 

 Time to allocate the data caches for the MAP:         0.0000784731 

 Time to pack the data for transfer to MAP:         0.0000101171 

 Time for MAP allocation:         0.5669450610 

 Time for MAP call:         0.0956240124 

 Time to unpack results and send to output file:         0.0031523541 

 Time to free the MAP:         1.0037887276 

 Time to free the data arrays:         0.0000034323 

 Total Time:        1.6708266397 

 

 Number of input samples: 1024 

 Time for disk access of input data:         0.0011605509 

 Time to allocate the data caches for the MAP:         0.0000752337 

 Time to pack the data for transfer to MAP:         0.0000101676 

 Time for MAP allocation:         0.6236788962 

 Time for MAP call:         0.0958688937 

 Time to unpack results and send to output file:         0.0031311201 

 Time to free the MAP:         1.0035382028 

 Time to free the data arrays:         0.0000033830 

 Total Time:        1.7274664481 

 

 Number of input samples: 1024 

 Time for disk access of input data:         0.0011683335 

 Time to allocate the data caches for the MAP:         0.0000749340 

 Time to pack the data for transfer to MAP:         0.0000102182 

 Time for MAP allocation:         0.5578285100 

 Time for MAP call:         0.0958067626 
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 Time to unpack results and send to output file:         0.0031323314 

 Time to free the MAP:         1.0037003675 

 Time to free the data arrays:         0.0000037855 

 Total Time:        1.6617252427 

 

 Number of input samples: 2048 

 Time for disk access of input data:         0.0021121742 

 Time to allocate the data caches for the MAP:         0.0001252035 

 Time to pack the data for transfer to MAP:         0.0000210125 

 Time for MAP allocation:         0.5629239089 

 Time for MAP call:         0.0960486161 

 Time to unpack results and send to output file:         0.0059072306 

 Time to free the MAP:         1.0108930274 

 Time to free the data arrays:         0.0000037240 

 Total Time:        1.6780348972 

 

 Number of input samples: 2048 

 Time for disk access of input data:         0.0021581480 

 Time to allocate the data caches for the MAP:         0.0001240052 

 Time to pack the data for transfer to MAP:         0.0000198348 

 Time for MAP allocation:         0.5655415718 

 Time for MAP call:         0.0959882690 

 Time to unpack results and send to output file:         0.0059822606 

 Time to free the MAP:         1.0108668191 

 Time to free the data arrays:         0.0000034374 

 Total Time:        1.6806843458 

 

 Number of input samples: 2048 

 Time for disk access of input data:         0.0020997350 

 Time to allocate the data caches for the MAP:         0.0001187363 

 Time to pack the data for transfer to MAP:         0.0000202602 

 Time for MAP allocation:         0.5527371586 

 Time for MAP call:         0.0959806834 

 Time to unpack results and send to output file:         0.0060287457 

 Time to free the MAP:         1.0008449403 

 Time to free the data arrays:         0.0000035115 

 Total Time:        1.6578337709 
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 Number of input samples: 2048 

 Time for disk access of input data:         0.0021319420 

 Time to allocate the data caches for the MAP:         0.0001291689 

 Time to pack the data for transfer to MAP:         0.0000213944 

 Time for MAP allocation:         0.5652251829 

 Time for MAP call:         0.0962193980 

 Time to unpack results and send to output file:         0.0060068518 

 Time to free the MAP:         1.0103367549 

 Time to free the data arrays:         0.0000033099 

 Total Time:        1.6800740027 

 

 Number of input samples: 2048 

 Time for disk access of input data:         0.0021120040 

 Time to allocate the data caches for the MAP:         0.0001270320 

 Time to pack the data for transfer to MAP:         0.0000202671 

 Time for MAP allocation:         0.6232019155 

 Time for MAP call:         0.0960557450 

 Time to unpack results and send to output file:         0.0059984444 

 Time to free the MAP:         1.0108003173 

 Time to free the data arrays:         0.0000030409 

 Total Time:        1.7383187662 

 

 Number of input samples: 4096 

 Time for disk access of input data:         0.0039900679 

 Time to allocate the data caches for the MAP:         0.0002096794 

 Time to pack the data for transfer to MAP:         0.0000459382 

 Time for MAP allocation:         0.5496688402 

 Time for MAP call:         0.0962074068 

 Time to unpack results and send to output file:         0.0116166790 

 Time to free the MAP:         1.0047562273 

 Time to free the data arrays:         0.0000039219 

 Total Time:        1.6664987608 

 

 Number of input samples: 4096 

 Time for disk access of input data:         0.0039976444 

 Time to allocate the data caches for the MAP:         0.0002221994 
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 Time to pack the data for transfer to MAP:         0.0000597746 

 Time for MAP allocation:         0.5453757423 

 Time for MAP call:         0.0963799618 

 Time to unpack results and send to output file:         0.0116735057 

 Time to free the MAP:         1.0045205898 

 Time to free the data arrays:         0.0000045923 

 Total Time:        1.6622340104 

 

 Number of input samples: 4096 

 Time for disk access of input data:         0.0040123798 

 Time to allocate the data caches for the MAP:         0.0002263054 

 Time to pack the data for transfer to MAP:         0.0000590547 

 Time for MAP allocation:         0.5631937416 

 Time for MAP call:         0.0962763444 

 Time to unpack results and send to output file:         0.0119604370 

 Time to free the MAP:         1.0046578696 

 Time to free the data arrays:         0.0000045894 

 Total Time:        1.6803907219 

 

 Number of input samples: 4096 

 Time for disk access of input data:         0.0039810075 

 Time to allocate the data caches for the MAP:         0.0002196887 

 Time to pack the data for transfer to MAP:         0.0000460430 

 Time for MAP allocation:         0.5485791007 

 Time for MAP call:         0.0962252609 

 Time to unpack results and send to output file:         0.0116839264 

 Time to free the MAP:         1.0046424461 

 Time to free the data arrays:         0.0000035757 

 Total Time:        1.6653810490 

 

 Number of input samples: 4096 

 Time for disk access of input data:         0.0040224830 

 Time to allocate the data caches for the MAP:         0.0002064347 

 Time to pack the data for transfer to MAP:         0.0000547056 

 Time for MAP allocation:         0.6224038432 

 Time for MAP call:         0.0960545790 

 Time to unpack results and send to output file:         0.0116945519 
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 Time to free the MAP:         1.0048462921 

 Time to free the data arrays:         0.0000038892 

 Total Time:        1.7392867787 

 

 Number of input samples: 8192 

 Time for disk access of input data:         0.0078223245 

 Time to allocate the data caches for the MAP:         0.0004023044 

 Time to pack the data for transfer to MAP:         0.0002119705 

 Time for MAP allocation:         0.5812084946 

 Time for MAP call:         0.0964297191 

 Time to unpack results and send to output file:         0.0228781873 

 Time to free the MAP:         1.0130009019 

 Time to free the data arrays:         0.0000038685 

 Total Time:        1.7219577708 

 

 Number of input samples: 8192 

 Time for disk access of input data:         0.0078307251 

 Time to allocate the data caches for the MAP:         0.0004436297 

 Time to pack the data for transfer to MAP:         0.0002067542 

 Time for MAP allocation:         0.5730418858 

 Time for MAP call:         0.0966391728 

 Time to unpack results and send to output file:         0.0230338760 

 Time to free the MAP:         1.0131350597 

 Time to free the data arrays:         0.0000040277 

 Total Time:        1.7143351309 

 

 Number of input samples: 8192 

 Time for disk access of input data:         0.0077393767 

 Time to allocate the data caches for the MAP:         0.0004243039 

 Time to pack the data for transfer to MAP:         0.0001817426 

 Time for MAP allocation:         0.6185239698 

 Time for MAP call:         0.0966174048 

 Time to unpack results and send to output file:         0.0230480030 

 Time to free the MAP:         1.0029756321 

 Time to free the data arrays:         0.0000042630 

 Total Time:        1.7495146959 
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 Number of input samples: 8192 

 Time for disk access of input data:         0.0078371656 

 Time to allocate the data caches for the MAP:         0.0004584440 

 Time to pack the data for transfer to MAP:         0.0002532533 

 Time for MAP allocation:         0.5599991367 

 Time for MAP call:         0.0966641570 

 Time to unpack results and send to output file:         0.0232095667 

 Time to free the MAP:         1.0027152393 

 Time to free the data arrays:         0.0000033759 

 Total Time:        1.6911403385 

 

 Number of input samples: 8192 

 Time for disk access of input data:         0.0077986943 

 Time to allocate the data caches for the MAP:         0.0004437948 

 Time to pack the data for transfer to MAP:         0.0001976624 

 Time for MAP allocation:         0.6172022498 

 Time for MAP call:         0.0967147538 

 Time to unpack results and send to output file:         0.0237511987 

 Time to free the MAP:         1.0120747115 

 Time to free the data arrays:         0.0000037410 

 Total Time:        1.7581868063 

 

 Number of input samples: 16384 

 Time for disk access of input data:         0.0154911431 

 Time to allocate the data caches for the MAP:         0.0011080426 

 Time to pack the data for transfer to MAP:         0.0008457769 

 Time for MAP allocation:         0.5440686744 

 Time for MAP call:         0.0972487617 

 Time to unpack results and send to output file:         0.0456674025 

 Time to free the MAP:         1.0098512721 

 Time to free the data arrays:         0.0001430044 

 Total Time:        1.7144240776 

 

 Number of input samples: 16384 

 Time for disk access of input data:         0.0155376915 

 Time to allocate the data caches for the MAP:         0.0010734378 

 Time to pack the data for transfer to MAP:         0.0007945728 
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 Time for MAP allocation:         0.5509032889 

 Time for MAP call:         0.0973605433 

 Time to unpack results and send to output file:         0.0459777423 

 Time to free the MAP:         1.0094799668 

 Time to free the data arrays:         0.0001454507 

 Total Time:        1.7212726941 

 

 Number of input samples: 16384 

 Time for disk access of input data:         0.0154718570 

 Time to allocate the data caches for the MAP:         0.0010781133 

 Time to pack the data for transfer to MAP:         0.0008486386 

 Time for MAP allocation:         0.6051188154 

 Time for MAP call:         0.0972983311 

 Time to unpack results and send to output file:         0.0458111949 

 Time to free the MAP:         1.0094288469 

 Time to free the data arrays:         0.0001662607 

 Total Time:        1.7752220580 

 

 Number of input samples: 16384 

 Time for disk access of input data:         0.0154333424 

 Time to allocate the data caches for the MAP:         0.0011713841 

 Time to pack the data for transfer to MAP:         0.0008559671 

 Time for MAP allocation:         0.6519303209 

 Time for MAP call:         0.0973521378 

 Time to unpack results and send to output file:         0.0459583633 

 Time to free the MAP:         1.0095304322 

 Time to free the data arrays:         0.0001494944 

 Total Time:        1.8223814423 

 

 Number of input samples: 16384 

 Time for disk access of input data:         0.0152250228 

 Time to allocate the data caches for the MAP:         0.0011885736 

 Time to pack the data for transfer to MAP:         0.0010387779 

 Time for MAP allocation:         0.6485815154 

 Time for MAP call:         0.0975391807 

 Time to unpack results and send to output file:         0.0464225369 

 Time to free the MAP:         1.0087604537 
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 Time to free the data arrays:         0.0001434464 

 Total Time:        1.8188995075 

 

 Number of input samples: 32768 

 Time for disk access of input data:         0.0316404635 

 Time to allocate the data caches for the MAP:         0.0034781572 

 Time to pack the data for transfer to MAP:         0.0029248423 

 Time for MAP allocation:         0.6252940828 

 Time for MAP call:         0.0988847446 

 Time to unpack results and send to output file:         0.0913046420 

 Time to free the MAP:         1.0023308353 

 Time to free the data arrays:         0.0002494756 

 Total Time:        1.8561072433 

 

 Number of input samples: 32768 

 Time for disk access of input data:         0.0305634427 

 Time to allocate the data caches for the MAP:         0.0022265891 

 Time to pack the data for transfer to MAP:         0.0023904122 

 Time for MAP allocation:         0.5508623337 

 Time for MAP call:         0.0992578574 

 Time to unpack results and send to output file:         0.0917728660 

 Time to free the MAP:         1.0118414713 

 Time to free the data arrays:         0.0002532977 

 Total Time:        1.7891682702 

 

 Number of input samples: 32768 

 Time for disk access of input data:         0.0307901613 

 Time to allocate the data caches for the MAP:         0.0022666832 

 Time to pack the data for transfer to MAP:         0.0033268828 

 Time for MAP allocation:         0.5559343584 

 Time for MAP call:         0.0989380410 

 Time to unpack results and send to output file:         0.0916615997 

 Time to free the MAP:         1.0122256754 

 Time to free the data arrays:         0.0002460956 

 Total Time:        1.7953894975 

 

 Number of input samples: 32768 
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 Time for disk access of input data:         0.0311453124 

 Time to allocate the data caches for the MAP:         0.0022655370 

 Time to pack the data for transfer to MAP:         0.0023452306 

 Time for MAP allocation:         0.5423111092 

 Time for MAP call:         0.0989094210 

 Time to unpack results and send to output file:         0.0934043771 

 Time to free the MAP:         1.0106256046 

 Time to free the data arrays:         0.0002398184 

 Total Time:        1.7812464102 

 

 Number of input samples: 32768 

 Time for disk access of input data:         0.0303366007 

 Time to allocate the data caches for the MAP:         0.0023124818 

 Time to pack the data for transfer to MAP:         0.0021618444 

 Time for MAP allocation:         0.5487904255 

 Time for MAP call:         0.0987779063 

 Time to unpack results and send to output file:         0.0917617551 

 Time to free the MAP:         1.0123094293 

 Time to free the data arrays:         0.0002469738 

 Total Time:        1.7866974169 

 

 Number of input samples: 65536 

 Time for disk access of input data:         0.0642365906 

 Time to allocate the data caches for the MAP:         0.0049776484 

 Time to pack the data for transfer to MAP:         0.0047179230 

 Time for MAP allocation:         0.5696820675 

 Time for MAP call:         0.1021540966 

 Time to unpack results and send to output file:         0.1828584631 

 Time to free the MAP:         1.0077824403 

 Time to free the data arrays:         0.0004443910 

 Total Time:        1.9368536205 

 

 Number of input samples: 65536 

 Time for disk access of input data:         0.0609015811 

 Time to allocate the data caches for the MAP:         0.0075692546 

 Time to pack the data for transfer to MAP:         0.0054795219 

 Time for MAP allocation:         0.5880060163 
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 Time for MAP call:         0.1020899076 

 Time to unpack results and send to output file:         0.1833274872 

 Time to free the MAP:         1.0068394203 

 Time to free the data arrays:         0.0004423104 

 Total Time:        1.9546554993 

 

 Number of input samples: 65536 

 Time for disk access of input data:         0.0635116564 

 Time to allocate the data caches for the MAP:         0.0055077909 

 Time to pack the data for transfer to MAP:         0.0046081302 

 Time for MAP allocation:         0.5434199974 

 Time for MAP call:         0.1022932166 

 Time to unpack results and send to output file:         0.1835829851 

 Time to free the MAP:         1.0065619061 

 Time to free the data arrays:         0.0004432341 

 Total Time:        1.9099289168 

 

 Number of input samples: 65536 

 Time for disk access of input data:         0.0602645045 

 Time to allocate the data caches for the MAP:         0.0064083445 

 Time to pack the data for transfer to MAP:         0.0063568686 

 Time for MAP allocation:         0.5564223806 

 Time for MAP call:         0.1022868127 

 Time to unpack results and send to output file:         0.1841379679 

 Time to free the MAP:         1.0061306859 

 Time to free the data arrays:         0.0004438511 

 Total Time:        1.9224514159 

 

 Number of input samples: 65536 

 Time for disk access of input data:         0.0603332552 

 Time to allocate the data caches for the MAP:         0.0076104885 

 Time to pack the data for transfer to MAP:         0.0053092038 

 Time for MAP allocation:         0.5615856629 

 Time for MAP call:         0.1317872155 

 Time to unpack results and send to output file:         0.1840570403 

 Time to free the MAP:         1.0066493416 

 Time to free the data arrays:         0.0004394368 
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 Total Time:        1.9577716446 

 

 Number of input samples: 131072 

 Time for disk access of input data:         0.1220448297 

 Time to allocate the data caches for the MAP:         0.0093876077 

 Time to pack the data for transfer to MAP:         0.0089142388 

 Time for MAP allocation:         0.7330934388 

 Time for MAP call:         0.1090398467 

 Time to unpack results and send to output file:         0.6348346174 

 Time to free the MAP:         1.0086661741 

 Time to free the data arrays:         0.0009079930 

 Total Time:        2.6268887462 

 

 Number of input samples: 131072 

 Time for disk access of input data:         0.1201003324 

 Time to allocate the data caches for the MAP:         0.0093825150 

 Time to pack the data for transfer to MAP:         0.0089177907 

 Time for MAP allocation:         0.5360358666 

 Time for MAP call:         0.1088606189 

 Time to unpack results and send to output file:         0.5496880324 

 Time to free the MAP:         1.0040097385 

 Time to free the data arrays:         0.0009155073 

 Total Time:        2.3379104019 

 

 Number of input samples: 131072 

 Time for disk access of input data:         0.1229936327 

 Time to allocate the data caches for the MAP:         0.0093958263 

 Time to pack the data for transfer to MAP:         0.0088779075 

 Time for MAP allocation:         0.5349584831 

 Time for MAP call:         0.1089405220 

 Time to unpack results and send to output file:         0.6081954039 

 Time to free the MAP:         1.0055497212 

 Time to free the data arrays:         0.0009038526 

 Total Time:        2.3998153493 

 

 Number of input samples: 131072 

 Time for disk access of input data:         0.1227266786 



116 

 Time to allocate the data caches for the MAP:         0.0094592113 

 Time to pack the data for transfer to MAP:         0.0088770638 

 Time for MAP allocation:         0.5336023561 

 Time for MAP call:         0.1086331309 

 Time to unpack results and send to output file:         0.6763001675 

 Time to free the MAP:         1.0175269860 

 Time to free the data arrays:         0.0009064127 

 Total Time:        2.4780320070 

 

 Number of input samples: 131072 

 Time for disk access of input data:         0.1200560762 

 Time to allocate the data caches for the MAP:         0.0093610427 

 Time to pack the data for transfer to MAP:         0.0089234996 

 Time for MAP allocation:         0.5939230269 

 Time for MAP call:         0.1088982179 

 Time to unpack results and send to output file:         0.6142954248 

 Time to free the MAP:         1.0194287639 

 Time to free the data arrays:         0.0009110189 

 Total Time:        2.4757970710 

 

 Number of input samples: 262144 

 Time for disk access of input data:         0.2439861309 

 Time to allocate the data caches for the MAP:         0.0188529759 

 Time to pack the data for transfer to MAP:         0.0178578915 

 Time for MAP allocation:         0.6893795544 

 Time for MAP call:         0.1218434373 

 Time to unpack results and send to output file:         1.1910147560 

 Time to free the MAP:         1.0097043914 

 Time to free the data arrays:         0.0017815761 

 Total Time:        3.2944207134 

 

 Number of input samples: 262144 

 Time for disk access of input data:         0.2439314867 

 Time to allocate the data caches for the MAP:         0.0188461833 

 Time to pack the data for transfer to MAP:         0.0178297551 

 Time for MAP allocation:         0.5352123523 

 Time for MAP call:         0.1242827591 
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 Time to unpack results and send to output file:         1.3234282694 

 Time to free the MAP:         1.0119794117 

 Time to free the data arrays:         0.0017971567 

 Total Time:        3.2773073744 

 

 Number of input samples: 262144 

 Time for disk access of input data:         0.2399882292 

 Time to allocate the data caches for the MAP:         0.0188378134 

 Time to pack the data for transfer to MAP:         0.0179187362 

 Time for MAP allocation:         0.5406684882 

 Time for MAP call:         0.1219761128 

 Time to unpack results and send to output file:         1.2522615479 

 Time to free the MAP:         1.0082841585 

 Time to free the data arrays:         0.0017902603 

 Total Time:        3.2017253466 

 

 Number of input samples: 262144 

 Time for disk access of input data:         0.2455214649 

 Time to allocate the data caches for the MAP:         0.0190074293 

 Time to pack the data for transfer to MAP:         0.0178621577 

 Time for MAP allocation:         0.5320163383 

 Time for MAP call:         0.1217802391 

 Time to unpack results and send to output file:         1.2010226196 

 Time to free the MAP:         1.0097881788 

 Time to free the data arrays:         0.0018161935 

 Total Time:        3.1488146211 

 

 Number of input samples: 262144 

 Time for disk access of input data:         0.2401958352 

 Time to allocate the data caches for the MAP:         0.0190414892 

 Time to pack the data for transfer to MAP:         0.0178416384 

 Time for MAP allocation:         0.5350196342 

 Time for MAP call:         0.1220957637 

 Time to unpack results and send to output file:         1.2980060737 

 Time to free the MAP:         1.0024299308 

 Time to free the data arrays:         0.0018355162 

 Total Time:        3.2364658814 
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 Number of input samples: 500000 

 Time for disk access of input data:         0.4576555924 

 Time to allocate the data caches for the MAP:         0.0357430988 

 Time to pack the data for transfer to MAP:         0.0341176347 

 Time for MAP allocation:         0.5400339917 

 Time for MAP call:         0.1453687382 

 Time to unpack results and send to output file:         2.2802877245 

 Time to free the MAP:         1.0271661955 

 Time to free the data arrays:         0.0034380277 

 Total Time:        4.5238110034 

 

 Number of input samples: 500000 

 Time for disk access of input data:         0.4639648099 

 Time to allocate the data caches for the MAP:         0.0356763230 

 Time to pack the data for transfer to MAP:         0.0341234227 

 Time for MAP allocation:         0.5855113962 

 Time for MAP call:         0.1453061264 

 Time to unpack results and send to output file:         2.4983290645 

 Time to free the MAP:         1.0092234109 

 Time to free the data arrays:         0.0034494809 

 Total Time:        4.7755840344 

 

 Number of input samples: 500000 

 Time for disk access of input data:         0.4578109535 

 Time to allocate the data caches for the MAP:         0.0359110724 

 Time to pack the data for transfer to MAP:         0.0339820569 

 Time for MAP allocation:         0.5354018536 

 Time for MAP call:         0.1452250762 

 Time to unpack results and send to output file:         2.6184729122 

 Time to free the MAP:         1.0091233435 

 Time to free the data arrays:         0.0034339475 

 Total Time:        4.8393612159 

 

 Number of input samples: 500000 

 Time for disk access of input data:         0.4575756039 

 Time to allocate the data caches for the MAP:         0.0357971735 
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 Time to pack the data for transfer to MAP:         0.0339763491 

 Time for MAP allocation:         0.5455715893 

 Time for MAP call:         0.1451846370 

 Time to unpack results and send to output file:         2.4218357695 

 Time to free the MAP:         1.0357822277 

 Time to free the data arrays:         0.0033822233 

 Total Time:        4.6791055732 

 

 Number of input samples: 500000 

 Time for disk access of input data:         0.4678256030 

 Time to allocate the data caches for the MAP:         0.0413532404 

 Time to pack the data for transfer to MAP:         0.0363923355 

 Time for MAP allocation:         0.5508184513 

 Time for MAP call:         0.1455726750 

 Time to unpack results and send to output file:         2.2853761229 

 Time to free the MAP:         1.0018905374 

 Time to free the data arrays:         0.0033834348 

 Total Time:        4.5326124002 
 
B. SRC-6E C PROGRAM DATA 

Time to complete 32 samples: 0.1400 seconds. 

Time to complete 32 samples: 0.1300 seconds. 

Time to complete 32 samples: 0.1300 seconds. 

Time to complete 32 samples: 0.1300 seconds. 

Time to complete 32 samples: 0.1400 seconds. 

Time to complete 64 samples: 0.1400 seconds. 

Time to complete 64 samples: 0.1200 seconds. 

Time to complete 64 samples: 0.1200 seconds. 

Time to complete 64 samples: 0.1100 seconds. 

Time to complete 64 samples: 0.1200 seconds. 

Time to complete 128 samples: 0.1200 seconds. 

Time to complete 128 samples: 0.1200 seconds. 

Time to complete 128 samples: 0.1200 seconds. 

Time to complete 128 samples: 0.1500 seconds. 

Time to complete 128 samples: 0.1200 seconds. 

Time to complete 256 samples: 0.1200 seconds. 

Time to complete 256 samples: 0.1200 seconds. 

Time to complete 256 samples: 0.1200 seconds. 
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Time to complete 256 samples: 0.1200 seconds. 

Time to complete 256 samples: 0.1200 seconds. 

Time to complete 512 samples: 0.1200 seconds. 

Time to complete 512 samples: 0.1200 seconds. 

Time to complete 512 samples: 0.1200 seconds. 

Time to complete 512 samples: 0.1200 seconds. 

Time to complete 512 samples: 0.1200 seconds. 

Time to complete 1024 samples: 0.1200 seconds. 

Time to complete 1024 samples: 0.1200 seconds. 

Time to complete 1024 samples: 0.1200 seconds. 

Time to complete 1024 samples: 0.1300 seconds. 

Time to complete 1024 samples: 0.1200 seconds. 

Time to complete 2048 samples: 0.1200 seconds. 

Time to complete 2048 samples: 0.1300 seconds. 

Time to complete 2048 samples: 0.1300 seconds. 

Time to complete 2048 samples: 0.1200 seconds. 

Time to complete 2048 samples: 0.1300 seconds. 

Time to complete 4096 samples: 0.1300 seconds. 

Time to complete 4096 samples: 0.1300 seconds. 

Time to complete 4096 samples: 0.1300 seconds. 

Time to complete 4096 samples: 0.1400 seconds. 

Time to complete 4096 samples: 0.1400 seconds. 

Time to complete 8192 samples: 0.1500 seconds. 

Time to complete 8192 samples: 0.1500 seconds. 

Time to complete 8192 samples: 0.1500 seconds. 

Time to complete 8192 samples: 0.1500 seconds. 

Time to complete 8192 samples: 0.1500 seconds. 

Time to complete 16384 samples: 0.2100 seconds. 

Time to complete 16384 samples: 0.1800 seconds. 

Time to complete 16384 samples: 0.1600 seconds. 

Time to complete 16384 samples: 0.1800 seconds. 

Time to complete 16384 samples: 0.1800 seconds. 

Time to complete 32768 samples: 0.2600 seconds. 

Time to complete 32768 samples: 0.2500 seconds. 

Time to complete 32768 samples: 0.2600 seconds. 

Time to complete 32768 samples: 0.2600 seconds. 

Time to complete 32768 samples: 0.2600 seconds. 
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Time to complete 65536 samples: 0.3800 seconds. 

Time to complete 65536 samples: 0.3500 seconds. 

Time to complete 65536 samples: 0.3500 seconds. 

Time to complete 65536 samples: 0.3500 seconds. 

Time to complete 65536 samples: 0.3700 seconds. 

Time to complete 131072 samples: 0.6000 seconds. 

Time to complete 131072 samples: 0.6700 seconds. 

Time to complete 131072 samples: 0.6600 seconds. 

Time to complete 131072 samples: 0.6300 seconds. 

Time to complete 131072 samples: 0.6100 seconds. 

Time to complete 262144 samples: 1.1200 seconds. 

Time to complete 262144 samples: 1.0700 seconds. 

Time to complete 262144 samples: 1.2800 seconds. 

Time to complete 262144 samples: 1.1300 seconds. 

Time to complete 262144 samples: 1.1800 seconds. 

Time to complete 500000 samples: 2.0300 seconds. 

Time to complete 500000 samples: 2.0400 seconds. 

Time to complete 500000 samples: 2.0400 seconds. 

Time to complete 500000 samples: 2.0300 seconds. 

Time to complete 500000 samples: 2.0700 seconds. 
 
C. WINDOWS C PROGRAM DATA 

Time to complete 32 samples: 0.0310 seconds. 

Time to complete 32 samples: 0.0460 seconds. 

Time to complete 32 samples: 0.0460 seconds. 

Time to complete 32 samples: 0.0460 seconds. 

Time to complete 32 samples: 0.0460 seconds. 

Time to complete 64 samples: 0.0460 seconds. 

Time to complete 64 samples: 0.0460 seconds. 

Time to complete 64 samples: 0.0460 seconds. 

Time to complete 64 samples: 0.0460 seconds. 

Time to complete 64 samples: 0.0460 seconds. 

Time to complete 128 samples: 0.0310 seconds. 

Time to complete 128 samples: 0.0460 seconds. 

Time to complete 128 samples: 0.0460 seconds. 

Time to complete 128 samples: 0.0460 seconds. 

Time to complete 128 samples: 0.0460 seconds. 

Time to complete 256 samples: 0.0460 seconds. 
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Time to complete 256 samples: 0.0460 seconds. 

Time to complete 256 samples: 0.0460 seconds. 

Time to complete 256 samples: 0.0620 seconds. 

Time to complete 256 samples: 0.0620 seconds. 

Time to complete 512 samples: 0.0460 seconds. 

Time to complete 512 samples: 0.0460 seconds. 

Time to complete 512 samples: 0.0460 seconds. 

Time to complete 512 samples: 0.0460 seconds. 

Time to complete 512 samples: 0.0620 seconds. 

Time to complete 1024 samples: 0.0620 seconds. 

Time to complete 1024 samples: 0.0620 seconds. 

Time to complete 1024 samples: 0.0620 seconds. 

Time to complete 1024 samples: 0.0620 seconds. 

Time to complete 1024 samples: 0.0620 seconds. 

Time to complete 2048 samples: 0.0620 seconds. 

Time to complete 2048 samples: 0.0620 seconds. 

Time to complete 2048 samples: 0.0620 seconds. 

Time to complete 2048 samples: 0.0620 seconds. 

Time to complete 2048 samples: 0.0620 seconds. 

Time to complete 4096 samples: 0.0620 seconds. 

Time to complete 4096 samples: 0.0620 seconds. 

Time to complete 4096 samples: 0.0620 seconds. 

Time to complete 4096 samples: 0.0780 seconds. 

Time to complete 4096 samples: 0.0780 seconds. 

Time to complete 8192 samples: 0.0930 seconds. 

Time to complete 8192 samples: 0.0930 seconds. 

Time to complete 8192 samples: 0.0930 seconds. 

Time to complete 8192 samples: 0.0930 seconds. 

Time to complete 8192 samples: 0.0930 seconds. 

Time to complete 16384 samples: 0.1240 seconds. 

Time to complete 16384 samples: 0.1240 seconds. 

Time to complete 16384 samples: 0.1400 seconds. 

Time to complete 16384 samples: 0.1400 seconds. 

Time to complete 16384 samples: 0.1400 seconds. 

Time to complete 32768 samples: 0.2030 seconds. 

Time to complete 32768 samples: 0.2180 seconds. 

Time to complete 32768 samples: 0.2180 seconds. 
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Time to complete 32768 samples: 0.2180 seconds. 

Time to complete 32768 samples: 0.2180 seconds. 

Time to complete 65536 samples: 0.3280 seconds. 

Time to complete 65536 samples: 0.3430 seconds. 

Time to complete 65536 samples: 0.3430 seconds. 

Time to complete 65536 samples: 0.3430 seconds. 

Time to complete 65536 samples: 0.4370 seconds. 

Time to complete 131072 samples: 0.5780 seconds. 

Time to complete 131072 samples: 0.5780 seconds. 

Time to complete 131072 samples: 0.5930 seconds. 

Time to complete 131072 samples: 0.5930 seconds. 

Time to complete 131072 samples: 0.5930 seconds. 

Time to complete 262144 samples: 1.0620 seconds. 

Time to complete 262144 samples: 1.0780 seconds. 

Time to complete 262144 samples: 1.0780 seconds. 

Time to complete 262144 samples: 1.0780 seconds. 

Time to complete 262144 samples: 1.1240 seconds. 

Time to complete 500000 samples: 2.0310 seconds. 

Time to complete 500000 samples: 2.0310 seconds. 

Time to complete 500000 samples: 2.8900 seconds. 

Time to complete 500000 samples: 3.1710 seconds. 

Time to complete 500000 samples: 3.1710 seconds. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



124 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



125 

LIST OF REFERENCES 

[1] David Caliga and David Peter Barker, “Delivering Accel-

eration:  The Potential for Increased HPC Application Per-

formance Using Reconfigurable Logic,” ACM 1-58113-293-

X/01/0011, November 2001. 

[2] “SRC-6E MAP© Hardware Guide,” SRC-005-03, SRC Com-

puters, Inc., Colorado Springs, January 6, 2003. 

[3] “Virtex-II Platform FPGAs: Complete Data Sheet, DC and 

Switching Characteristics,” DS031-3 (v3.1), Xilinx, Inc., 

San Jose, CA, October 14, 2003.  From website: 

http://direct.xilinx.com/bvdocs/publications/ds031.pdf, ac-

cessed December 2003.  

[4] “SRC-6E C Programming Environment V1.5 Guide,” SRC-007-

08, SRC Computers Inc., Colorado Springs, September 5, 

2003. 

[5] “SRC-6E Fortran Programming Environment V1.5 Guide,” 

SRC-006-08, SRC Computers Inc., Colorado Springs, September 

5, 2003. 

[6] “SRC-6E MAP© Macro Developers Guide,” SRC-008-01, SRC 

Computers Inc., Colorado Springs, September 23, 2002. 

[7] “SRC-6E Programming Environment V1.5 Technical Note: 

Supported Macros,” SRC Computers Inc., Colorado Springs, 

September 5, 2003. 

[8] Charles H. Roth, Jr., Digital Systems Design Using 

VHDL, PWS Publishing Company, Boston, 1998. 

[9] Author Unknown.  Unpublished project notes from previ-

ous work.  Naval Postgraduate School. 

 



126 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



127 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Chairman, Code EC 
Department of Electrical and Computer Engineering 
Naval Postgraduate School 
Monterey, California 
 

4. Alan Hunsberger 
National Security Agency 
Ft. Meade, MD 
 

5. Dr. Russell Duren 
Baylor University 
Engineering Department 
Rogers, TX 

 


